2.在復平面內(nèi),復數(shù)z=(1+i)•(1-2i),則其對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由乘法運算展開復數(shù)z,求出在復平面內(nèi),復數(shù)z對應的點的坐標,則答案可求.

解答 解:z=(1+i)•(1-2i)=3-i,
在復平面內(nèi),復數(shù)z對應的點的坐標為:(3,-1),位于第四象限.
故選:D.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.26B.11C.4D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=sin2x-$\frac{1}{2}$,g(x)=$\frac{{\sqrt{2}}}{4}-\frac{1}{2}$sin2x.
(Ⅰ)求函數(shù)f(x)與g(x)圖象交點的橫坐標;
(Ⅱ)若函數(shù)φ(x)=$\frac{{\sqrt{2}}}{4}$-f(x)-g(x),將函數(shù)φ(x)圖象上的點縱坐標不變,橫坐標擴大為原來的4倍,再將所得函數(shù)圖象向右平移$\frac{5π}{6}$個單位,得到函數(shù)h(x),求h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知角α終邊上一點P(-4,3 ),求$\frac{cos(\frac{3π}{2}+α)sin(-5π-α)}{cos(6π-α)sin(\frac{π}{2}+α)tan(-3π+α)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.i為虛數(shù)單位,復平面內(nèi)表示復數(shù)z=(-2-i)(3+i)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.(3x-2)10的展開式的第5項的系數(shù)是( 。
A.$C_{10}^5$B.$C_{10}^5•{3^5}•{({-2})^5}$C.$C_{10}^4•{3^6}•{({-2})^4}$D.$C_{10}^4$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某媒體為了解某地區(qū)大學生晚上放學后使用手機上網(wǎng)情況,隨機抽取了100名大學生進行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學生每晚使用手機上網(wǎng)平均所用時間的頻率分布直方圖.將時間不低于40分鐘的學生稱為“手機迷”.
(1)樣本中“手機迷”有多少人?
非手機迷手機迷合計
301545
451055
合計7525100
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認為“手機迷”與性別有關(guān)?
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量大學 生中,采用隨機抽樣方法每次抽取1名大學生,抽取3次,經(jīng)調(diào)查一名“手機迷”比“非手機迷”每月的話費平均多40元,記被抽取的3名大學生中的“手機迷”人數(shù)為X,且設3人每月的總話費比“非手機迷”共多出Y元,若每次抽取的結(jié)果是相互獨立的,求X的分布列和Y的期望EY.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=ln(|3x-1|-1)的定義域是( 。
A.(-∞,0)B.$(\frac{2}{3},+∞)$C.$(-∞,0)∪(\frac{2}{3},+∞)$D.$(0,\frac{2}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若存在n個不同的正整數(shù)a1,a2,…,an,對任意1≤i<j≤n,都有$\frac{{{a_i}+{a_j}}}{{{a_i}-{a_j}}}$∈Z,則稱這n個不同的正整數(shù)a1,a2,…,an為“n個好數(shù)”.
(1)請分別對n=2,n=3構(gòu)造一組“好數(shù)”;
(2)證明:對任意正整數(shù)n(n≥2),均存在“n個好數(shù)”.

查看答案和解析>>

同步練習冊答案