10.已知角α終邊上一點(diǎn)P(-4,3 ),求$\frac{cos(\frac{3π}{2}+α)sin(-5π-α)}{cos(6π-α)sin(\frac{π}{2}+α)tan(-3π+α)}$.

分析 根據(jù)定義求出tanα的值,再化簡(jiǎn)題目中的代數(shù)式并代入求值.

解答 解:角α終邊上一點(diǎn)P(-4,3 ),
∴tanα=$\frac{y}{x}$=-$\frac{3}{4}$;
∴$\frac{cos(\frac{3π}{2}+α)sin(-5π-α)}{cos(6π-α)sin(\frac{π}{2}+α)tan(-3π+α)}$
=$\frac{sinα[-sin(4π+π+α)]}{cos(-α)cosαtanα}$
=$\frac{sinα[-sin(π+α)]}{cos(-α)cosα•\frac{sinα}{cosα}}$
=$\frac{sinαsinα}{cosαsinα}$=tanα=-$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的定義、化簡(jiǎn)與求值問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知兩個(gè)具有線性相關(guān)關(guān)系的變量的一組數(shù)據(jù)(x1,y1),(x2,y2)…(xn,yn),且回歸直線方程為$\hat{y}$=a+bx,則最小二乘法的思想是( 。
A.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]最小B.使得$\sum_{i=1}^{n}$|yi-(ai+bxi)|最小
C.使得$\sum_{i=1}^{n}$[yi2-(ai+bxi2]最小D.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(5-2x)}$的定義域是[2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax-3y的最大值為2,則a=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示程序框圖.若輸人x=2015,則輸出的y=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在復(fù)平面內(nèi),復(fù)數(shù)z=(1+i)•(1-2i),則其對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖所示是畢達(dá)哥拉斯(Pythagoras)的生長(zhǎng)程序:正方形上連接著等腰直角三角形,等腰直角三角形邊上再連接正方形,如此繼續(xù),若共得到255個(gè)正方形,設(shè)初始正方形的邊長(zhǎng)為$\frac{{\sqrt{2}}}{2}$,則最小正方形的邊長(zhǎng)為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.對(duì)?a,b∈R,定義運(yùn)算:a⊕b=a(a-b),a?b=b(a+b).則下列判斷正確的是④⑤.
①2016⊕2017=2017;②(x+1)⊕1=1?x;③f(x)=x?(x⊕1)的零點(diǎn)為1,$\frac{1}{2}$;
④a⊕b=b⊕a的必要不充分條件是a=b;⑤a?b=b?a的充要條件是a⊕b=b⊕a.

查看答案和解析>>

同步練習(xí)冊(cè)答案