【題目】如圖,已知多面體的底面是邊長為2的正方形,底面,,且.
(1)求多面體的體積;
(2)記線段的中點(diǎn)為,在平面內(nèi)過點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,直線經(jīng)過橢圓的左頂點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線()交橢圓于兩點(diǎn)(不同于點(diǎn)).過原點(diǎn)的一條直線與直線交于點(diǎn),與直線分別交于點(diǎn).
(。┊(dāng)時(shí),求的最大值;
(ⅱ)若,求證:點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)傳統(tǒng)文化,某校舉行詩詞大賽.經(jīng)過層層選拔,最終甲乙兩人進(jìn)入總決賽,爭奪冠軍.決賽規(guī)則如下:①比賽共設(shè)有五道題;②雙方輪流答題,每次回答一道,兩人答題的先后順序通過抽簽決定;③若答對,自己得1分;若答錯,則對方得1分;④先得3分者獲勝.已知甲、乙答對每道題的概率分別為和,且每次答題的結(jié)果相互獨(dú)立.
(Ⅰ)若乙先答題,求甲3:0獲勝的概率;
(Ⅱ)若甲先答題,記乙所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的所有棱長均為2, , 分別為和的中點(diǎn).
(1)證明: 平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線交于兩點(diǎn), 是的中點(diǎn),過作軸的垂線交于點(diǎn).
(1)證明:拋物線在點(diǎn)處的切線與平行;
(2)是否存在實(shí)數(shù),使以為直徑的圓經(jīng)過點(diǎn)?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了對應(yīng)因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65的人群中隨機(jī)調(diào)查50人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有90%的把握認(rèn)為以45歲為分界點(diǎn)對“延遲退休年齡政策”的支持度有差異:
(2)若從年齡在,的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,記選中的4人中支持“延遲退休”人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(為常數(shù)).
(1)當(dāng)時(shí),判斷在的單調(diào)性,并用定義證明;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)討論零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案側(cè)面的外輪廓線如圖所示:曲線是以點(diǎn)為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com