10.已知⊙O:x2+y2=1,若直線y=$\sqrt{k}$x+2上總存在點P,使得過點P的⊙O的兩條切線互相垂直,則實數(shù)k的取值范圍為( 。
A.k≥1B.k>1C.k≥2D.k>2

分析 由切線的對稱性和圓的知識將問題轉化為O(0,0)到直線y=$\sqrt{k}$x+2的距離小于或等于$\sqrt{2}$,再由點到直線的距離公式得到關于k的不等式求解.

解答 解:⊙O:x2+y2=1的圓心為:(0,0),半徑為1,
∵y=$\sqrt{k}$x+2上存在一點P,使得過P的圓O的兩條切線互相垂直,
∴在直線上存在一點P,使得P到O(0,0)的距離等于$\sqrt{2}$,
∴只需O(0,0)到直線y=$\sqrt{k}$x+2的距離小于或等于$\sqrt{2}$,
故$\frac{|2|}{\sqrt{k+1}}≤\sqrt{2}$,解得k≥1,
故選:A.

點評 本題考查直線和圓的位置關系,由題意得到圓心到直線的距離小于或等于$\sqrt{2}$是解決問題的關鍵,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.在平面直角坐標系xOy中,四邊形ABCD為矩形,A(1,0),B(2,0),C(2,$\sqrt{6}$),又A1(-1,0).點M在直線CD上,點N在直線BC上,且$\overrightarrow{DM}$=λ$\overrightarrow{DC}$,$\overrightarrow{BN}$=λ$\overrightarrow{BC}$(λ∈R).
(1)求直線AM與A1N的交點Q的軌跡S的方程;
(2)過點P(1,1)能否作一條直線l,與曲線S交于E、F兩點,且點P是線段EF的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知點M(x,y)與兩個定點M1(-c,0),M2(c,0)的距離的比等于一個正數(shù)m,求點M的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.用適當?shù)姆椒ㄗC明下列不等式
(1)已知a,b,c是正實數(shù),證明不等式$\frac{a+b}{2}•\frac{b+c}{2}•\frac{c+a}{2}$≥abc;
(2)求證:當a>1時,$\sqrt{a+1}+\sqrt{a-1}<2\sqrt{a}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在平面直角坐標系xOy中,已知經(jīng)過原點O的直線l與圓C:x2+y2-4x-1=0交于A,B兩點.
(Ⅰ)若直線m:ax-2y+a+2=0(a>0)與圓C相切,切點為B,求直線l的方程;
(Ⅱ)若圓C與x軸的正半軸的交點為D,求△ABD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.求以點C(2,1)為圓心,且與直線4x-3y=0相切的圓的方程(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右頂點是圓x2+y2-4x+3=0的圓心,其離心率為$\frac{{\sqrt{3}}}{2}$,則橢圓C的方程為( 。
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{3}$+y2=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖所示,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),⊙O:x2+y2=b2,點A、F分別是橢圓C的左頂點和左焦點,點P是⊙O上的動點,且$\frac{{|{PA}|}}{{|{PF}|}}$為定值,則橢圓C的離心率為(  )
A.$\frac{{\sqrt{2}-1}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,拋物線的頂點在坐標原點,焦點為F,過拋物線上一點A(3,y)作準線l作垂線,垂直為B,若△ABF為等邊三角形,則拋物線的標準方程是( 。
A.y2=$\frac{1}{2}$xB.y2=xC.y2=2xD.y2=4x

查看答案和解析>>

同步練習冊答案