10.已知三點(diǎn)A(1,2),B(2,4),C(3,m)共線,試求m的值.

分析 將三點(diǎn)共線轉(zhuǎn)化為以三點(diǎn)確定的兩條直線重合,其斜率相同,利用兩點(diǎn)的斜率公式列出方程求出m

解答 解:∵A、B、C三點(diǎn)共線
∴直線AC、BC的斜率相等
∴$\frac{4-2}{2-1}$=$\frac{m-4}{3-2}$,
解得m=6.

點(diǎn)評(píng) 本題考查兩點(diǎn)連線的斜率公式、考查三點(diǎn)共線轉(zhuǎn)化為三點(diǎn)確定的直線斜率相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD與BC交于點(diǎn)M,設(shè)$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b$,
(1)試用向量$\overrightarrow a$和$\overrightarrow b$表示$\overrightarrow{OM}$;
(2)過點(diǎn)M作直線EF分別交線段AC,BC于點(diǎn)E,F(xiàn),記$\overrightarrow{OE}=λ\overrightarrow{OA},\overrightarrow{OF}=μ\overrightarrow{OB}$,求證:不論點(diǎn)E,F(xiàn)在線段AC,BD上如何移動(dòng),$\frac{1}{λ}$$+\frac{3}{μ}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實(shí)數(shù)(a>0,b>0),且$\frac{1}{a}$+$\frac{2}$=1,則當(dāng)$\frac{2a+b}{8}$的最小值為m,函數(shù)f(x)=e-mx|lnx|-1的零點(diǎn)個(gè)數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=a+$\frac{2}{{2}^{x}+1}$(x∈R)是奇函數(shù).
(1)求常數(shù)a的值;
(2)若f(x)>0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,若a=($\sqrt{3}$-1)b,C=30°,則A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓M的對(duì)稱軸為坐標(biāo)軸,拋物線y2=4x的焦點(diǎn)F是橢圓M的一個(gè)焦點(diǎn),且橢圓M的離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓M的方程;
(2)已知直線y=x+m與橢圓M交于A,B兩點(diǎn),且橢圓M上存在點(diǎn)P,滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A(1,2,-1),B(5,6,7),則直線AB與平面xoz交點(diǎn)的坐標(biāo)是( 。
A.(0,1,1)B.(0,1,-3)C.(-1,0,3)D.(-1,0,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)P(0,1)在短軸CD上,且$\overrightarrow{PC}•\overrightarrow{PD}=-1$.
(I)求橢圓E的方程;
(Ⅱ)過點(diǎn)P的直線l與橢圓E交于A,B兩點(diǎn).
(i)若$\overrightarrow{PB}=\frac{1}{2}\overrightarrow{AP}$,求直線l的方程;
(ii)在y軸上是否存在與點(diǎn)P不同的定點(diǎn)Q,使得$\frac{{\left|{QA}\right|}}{{\left|{QB}\right|}}=\frac{{\left|{PA}\right|}}{{\left|{PB}\right|}}$恒成立,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列語句是真命題的是( 。
A.x>1B.若a>b,則a2>ab
C.y=sinx是奇函數(shù)嗎?D.若a-2是無理數(shù),則a是無理數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案