已知映射f:A→B,A=B=R,對應(yīng)法則f:x→y=x2-x-1,若a的象是a+2,則a=
 
考點(diǎn):映射
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中映射的對應(yīng)法則,構(gòu)造關(guān)于a的方程,解方程可得滿足條件的a值.
解答: 解:∵對應(yīng)法則f:x→y=x2-x-1,若a的象是a+2,
∴a+2=a2-a-1,
即a2-2a-3=0,
解得:a=3或a=-1
故答案為:3或-1
點(diǎn)評:本題考查的知識(shí)點(diǎn)是映射的定義,其中根據(jù)已知中映射的對應(yīng)法則,構(gòu)造關(guān)于a的方程,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將正整數(shù)1,2,3,4,…,n2(n≥2)任意排成n行n列的數(shù)表,對于某一個(gè)數(shù)表,計(jì)算各行和各列中的任意兩個(gè)數(shù)a,b(a>b)的比值
a
b
,稱這些比值中的最小值為這個(gè)數(shù)表的“特征值”,記為f(n).若aij表示某個(gè)n行n列數(shù)表中第i行第j列的數(shù)(1≤i≤n,1≤j≤n),且滿足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
,則:
(1)f(3)=
 
;
(2)f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,若輸入i=5,則輸出的k值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知[x]表示不超過x的最大整數(shù),例如[-1.5]=-2,[1.5]=1.設(shè)函數(shù)f(x)=[x[x]],當(dāng)x∈[0,n)(n∈N*)時(shí),函數(shù)f(x)的值域?yàn)榧螦,則A中的元素個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x+y-1≤0
x-y+1≥0
y≥0
表示的平面區(qū)域內(nèi)的點(diǎn)都不在圓x2+(y-
1
2
2=r2(r>0)外,則r的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2x2,則f′(-1)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,an=n•an,若{an}是單調(diào)遞減數(shù)列,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)與g(x)的圖象在R上不間斷,由下表知方程f(x)=g(x)有實(shí)數(shù)解的區(qū)間是( 。
x-10123
f(x)-0.6773.0115.4325.9807.651
g(x)-0.5303.4514.8905.2416.892
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

同步練習(xí)冊答案