14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=24,S10=10,則使得Sn取最大值時(shí)n的值為( 。
A.5或6B.4或5C.5D.6

分析 利用等差數(shù)列的前n項(xiàng)和公式推導(dǎo)出a1=10,d=-2,從而求出Sn,利用配方法能求出使得Sn取最大值時(shí)n的值.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=24,S10=10,
∴$\left\{\begin{array}{l}{{S}_{3}=3{a}_{1}+\frac{3×2}{2}d=24}\\{{S}_{10}=10{a}_{1}+\frac{10×9}{2}d=10}\end{array}\right.$,
解得a1=10,d=-2,
∴Sn=10n+$\frac{n(n-1)}{2}×(-2)$=-n2+11n=-(n-$\frac{11}{2}$)2+$\frac{121}{4}$,
使得Sn取最大值時(shí)n的值為5或6.
故選:A.

點(diǎn)評(píng) 本題考查等差數(shù)列中使得Sn取最大值時(shí)n的值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.利用集合運(yùn)算,使下列任意兩個(gè)集合的運(yùn)算結(jié)果分別為:(1)非空集合;(2)空集;(3)R.如果結(jié)果是非空集合,請(qǐng)求出它的解集.
集合A={x|x≤1},集合B={x|x≥0},集合C={x|3≤x≤5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=(x2-$\frac{3}{m}$x+$\frac{5}{{m}^{2}}$)emx,其中實(shí)數(shù)m≠0.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若g(x)=f(x)-$\frac{2}{m}$x-5恰有兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(3)函數(shù)f(x)圖象可由y=sinx的圖象經(jīng)怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),則$\overrightarrow{a}$•$\overrightarrow$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為了調(diào)查大學(xué)生對(duì)吸煙是否影響學(xué)習(xí)的看法,詢問了大學(xué)一、二年級(jí)的200個(gè)大學(xué)生,詢問的結(jié)果記錄如下:其中大學(xué)一年級(jí)110名學(xué)生中有45人認(rèn)為不會(huì)影響學(xué)習(xí),有65人認(rèn)為會(huì)影響學(xué)習(xí),大學(xué)二年級(jí)90名學(xué)生中有55人認(rèn)為不會(huì)影響學(xué)習(xí),有35人認(rèn)為會(huì)影響學(xué)習(xí).
(I)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表;
有影響無影響合計(jì)
大一
大二
合計(jì)
(II)據(jù)此回答,能否有99%的把握斷定大學(xué)生因年級(jí)不同對(duì)吸煙問題所持態(tài)度也不同?
附表:
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.78910.828
(K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在(1+x)6(1+y)4的展開式中,記xmyn項(xiàng)的系數(shù)為f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}(n=1,2,3,…,2016),圓C1:x2+y2-4x-4y=0,圓C2:x2+y2-2anx-2a2017-ny=0,若圓C2平分圓C1的周長(zhǎng),則數(shù)列{an}的所有項(xiàng)的和為4032.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx-$\frac{1-a}{x}$(a為常數(shù))
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線x+y-3=0垂直,求a的值;
(2)若函數(shù)g(x)=f(x)-x的在區(qū)間(1,+∞)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案