分析 (Ⅰ)由正弦定理化簡(jiǎn)已知等式可得a2-b2=ac-c2,利用余弦定理可求cosB,又結(jié)合范圍0<B<π,即可求得B的值;
(Ⅱ)由已知及同角三角函數(shù)關(guān)系式可求sinA,結(jié)合正弦定理可求a,求得sinC后,即可利用三角形面積公式求解.
解答 解:(Ⅰ)因?yàn)?nbsp;$\frac{a+b}{sin(A+B)}=\frac{a-c}{sinA-sinB}$,所以$\frac{a+b}{c}=\frac{a-c}{a-b}$,----------------------------(2分)
所以a2-b2=ac-c2,---------------------------------------------------------------------------(3分)
所以$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{ac}{2ac}=\frac{1}{2}$,------------------------------------------------------(5分)
又因?yàn)?<B<π,所以B=$\frac{π}{3}$.-------------------------------------------------------------------(7分)
(Ⅱ)由b=3,cosA=$\frac{\sqrt{6}}{3}$可得sinA=$\frac{\sqrt{3}}{3}$,-----------------------------------------------------------(8分)
由$\frac{a}{sinA}=\frac{sinB}$可得a=2,----------------------------------------------------------------------(9分)
而sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{{\sqrt{3}+3\sqrt{2}}}{6}$---------------------------(11分)
所以△ABC的面積$S=\frac{1}{2}absinC$=$\frac{\sqrt{3}+3\sqrt{2}}{2}$.-----------------------------------------------(14分)
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)關(guān)系式,兩角和的正弦函數(shù)公式的應(yīng)用,考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,熟練掌握公式定理是解題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)(在(0,$\frac{π}{6}$)單調(diào)遞增 | B. | f(x)在(-$\frac{π}{3}$,-$\frac{π}{6}$)單調(diào)遞減 | ||
C. | f(x)在(-$\frac{π}{6}$,0)單調(diào)遞減 | D. | f(x)在($\frac{π}{6}$,$\frac{π}{3}$)單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0>0使“ax0>bx0”是“a>b>0”的必要不充分條件 | |
B. | 命題“?x0∈(0,+∞),lnx0=x0-1”的否定是“?x0∉(0,+∞),lnx0≠x0-1” | |
C. | 命題“若x2=2,則x=$\sqrt{2}$或x=-$\sqrt{2}$”的逆否命題是“若x≠$\sqrt{2}$或x≠-$\sqrt{2}$,則x2≠2” | |
D. | 若p∨q為真命題,則p∧q為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{4},1$] | B. | (1,$\frac{3}{2}$] | C. | ($\frac{3}{2},\frac{8}{5}$] | D. | (2,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com