9.求等差數(shù)列數(shù)列6,9,12,…,300的項數(shù).

分析 由題意和等差數(shù)列的通項公式可得項數(shù)n的方程,解方程可得.

解答 解:由題意可得等差數(shù)列的首項a1=6,公差d=9-6=3,an=300,
∴由等差數(shù)列的通項公式可得300=6+3(n-1),
解得n=99,故數(shù)列的項數(shù)為99.

點(diǎn)評 本題考查等差數(shù)列的通項公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,已知$\frac{a+b}{sin(A+B)}$=$\frac{a-c}{sinA-sinB}$
(Ⅰ)求角B
(Ⅱ)若b=3,cosA=$\frac{\sqrt{6}}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)對任意的m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0時,恒有f(x)>1.
(1)求證:f(x)在R上是增函數(shù);
(2)若f(3)=4,且不等式f(ma2+ma)<2對任意實(shí)數(shù)a恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=cosx•sin2x的最小值為-$\frac{4\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f($\frac{{x}_{1}}{{x}_{2}}$)=f(x1)-f(x2),且當(dāng)0<x<1時,f(x)>0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.比較下列各組數(shù)中值的大。
(1)log23.4<log28.5;
(2)log0.31.8>log0.32.7;
(3)loga5.1,loga5.9當(dāng)a>1時,loga5.1<loga5.9,當(dāng)0<a<1時,loga5.1>loga5.9;
(4)1.10.9,log1.10.9,log0.70.81.10.9>log0.70.8>log1.10.9;
(5)log20.4<log30.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求證:
(1)C${\;}_{n+1}^{1}$+2C${\;}_{n+1}^{2}$+3C${\;}_{n+1}^{3}$+…+(n+1)C${\;}_{n+1}^{n+1}$=(n+1)•2n
(2)2<(1+$\frac{1}{n}$)n<3(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足Sn=$\frac{n}{2}$an(n∈N*),其中Sn是{an}的前n項和,且a2=2.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\left\{\begin{array}{l}{{a}_{n}(n為奇數(shù))}\\{{a}_{{2}^{n}}(n為偶數(shù))}\end{array}\right.$,求數(shù)列{bn}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.不等式x2-4x-5≤0的解集用區(qū)間表示為[-1,5].

查看答案和解析>>

同步練習(xí)冊答案