20.在[0,2π]上,正弦函數(shù)、余弦函數(shù)同為減函數(shù)的區(qū)間是[$\frac{π}{2}$,π].

分析 由條件利用正弦函數(shù)、余弦函數(shù)的單調(diào)性,得出結(jié)論.

解答 解:在[0,2π]上,正弦函數(shù)、余弦函數(shù)同為減函數(shù)的區(qū)間是[$\frac{π}{2}$,π],
故答案為:[$\frac{π}{2}$,π].

點(diǎn)評(píng) 本題主要考查正弦函數(shù)、余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算:
sin30°+sin(30°+120°)+sin(30°+240°),
sin60°+sin(60°+120°)+sin(60°+240°).
觀察以上兩式及其結(jié)果的特點(diǎn),請(qǐng)寫出一個(gè)一般的等式,使得上述兩式為它的一個(gè)特例,并證明你寫的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(logax)=loga2x-alogax2+4,(a>0,a≠1)
(1)求y=f(x)的解析式;
(2)若方程f(3x)=0在(0,1)內(nèi)有兩個(gè)不同的根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河北石家莊一中高一下期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題

定圓M: ,動(dòng)圓N過點(diǎn)F且與圓M相切,記圓心N的軌跡為E.

(I)求軌跡E的方程;

(Ⅱ)設(shè)點(diǎn)A,B,C在E上運(yùn)動(dòng),A與B關(guān)于原點(diǎn)對(duì)稱,且|AC|=|CB|,當(dāng)△ABC的面積最小時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)$\overrightarrow{a}$,$\overrightarrow$為向量,且|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|,那么( 。
A.$\overrightarrow{a}$⊥$\overrightarrow$B.$\overrightarrow{a}$,$\overrightarrow$同向C.$\overrightarrow{a}$,$\overrightarrow$反向D.$\overrightarrow{a}$,$\overrightarrow$平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知指數(shù)函數(shù)f(x)=0.2-x,求f(0),f(-3),f($\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{4}x|,0<x≤4}\\{-\frac{1}{2}x+3,x>4}\end{array}\right.$,若a<b<c且f(a)=f(b)=f(c),則(ab+1)c的取值范圍是(16,64).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.有下列說法:
①函數(shù)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$為奇函數(shù);
②若$\frac{cosx}{1-sinx}$=$\frac{1}{2}$,則$\frac{cosx}{1+sinx}$=2;
③定義在R上的函數(shù)f(x)=f(x+2),當(dāng)x∈[3,5]時(shí),f(x)=2-|x-4|,則f(cos3)>f(sin3);
④已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2ax,x≤1}\\{ax+1,x>1}\end{array}\right.$,若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),則實(shí)數(shù)a的取值范圍是(-∞,1)∪(2,+∞).
其中正確說法有①②④(寫出所有正確說法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河北石家莊一中高一下期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為,圓心在上.

(Ⅰ)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;

(Ⅱ)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案