18.函數(shù)y=$\sqrt{-sinx}$+$\sqrt{tanx}$的定義域是(  )
A.2kπ+π≤x≤2kπ+$\frac{3π}{2}$,k∈ZB.2kπ+π<x<2kπ+$\frac{3π}{2}$,k∈Z
C.2kπ+π≤x<2kπ+$\frac{3π}{2}$,k∈ZD.2kπ+π<x<2kπ+$\frac{3π}{2}$或x=kπ,k∈Z

分析 根據(jù)y的解析式,得到-sinx≥0且tanx≥0,求出解集即可.

解答 解:由題意得:-sinx≥0,解得:2kπ+π≤x≤2kπ+2π,
又tanx≥0,解得:kπ+π≤x<kπ+$\frac{3π}{2}$,
∴函數(shù)的定義域是:{x|2kπ+π≤x<2kπ+$\frac{3π}{2}$,k∈Z}.
故選:C.

點(diǎn)評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知冪函數(shù)f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=$\sqrt{f(x)}$+2x+c,若g(x)>2對任意的x∈R恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率與雙曲線x2-y2=1的離心率互為倒數(shù),且C過點(diǎn)P($\sqrt{2},1$).
(1)求C的方程;
(2)若C的左右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l與C相交于A,B兩點(diǎn),求△F2AB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)y=f(x)=$\left\{\begin{array}{l}{3x+1,-3<x≤0}\\{2-{x}^{2},0<x<4}\end{array}\right.$.
(1)求函數(shù)的定義域;
(2)求f(2)、f(0)、f(-2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2sin(3x-$\frac{π}{6}$).
(1)求f(0)、f($\frac{2π}{9}$);
(2)分別指出函數(shù)f(x)的振幅、相位、初相位的值,并求出其最小正周期;
(3)求函數(shù)f(x)的遞增區(qū)間和遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.且a1+2a23a3+…+nan=(n-1)Sn+2n(n∈N*).
(1)求a1,a2的值;
(2)求證:數(shù)列{Sn+2}是等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=logsinβ(x2+ax+3)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是(  )
A.(-4,-2]B.[-4,-2]C.(-4,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.三個數(shù)為$a={log_3}0.2,b={3^{0.2}},c={0.2^3}$,則a,b,c的大小關(guān)系為( 。
A.a>c>bB.a<b<cC.a<c<bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合A={1,3},集合B={1,2,5},則集合A∪B=(  )
A.{1,2,5}B.{1}C.{1,2,3,5}D.{2,3,5}

查看答案和解析>>

同步練習(xí)冊答案