【題目】已知函數(shù)f(x)=xlnx﹣x+1,g(x)=ex﹣ax,a∈R.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若g(x)≥1在R上恒成立,求a的值;
(Ⅲ)求證:.
【答案】(Ⅰ)0(Ⅱ)a=1;(III)見解析
【解析】
(I)對f(x)求導(dǎo),分析導(dǎo)函數(shù)的正負(fù),得到函數(shù)f(x)的單調(diào)性,即得解.
(Ⅱ)由g(x)=ex﹣ax≥1恒成立可得ax+1≤ex恒成立,可求得函數(shù)y=h(x)在(0,1)處的切線方程為y=x+1,故可得證.
(III)由(Ⅱ)兩邊取對數(shù)得ln(x+1)≤x,令x,可得證.
(I)f'(x)=lnx,
∴當(dāng)0<x<1時,f'(x)<0,x>1時,f'(x)>0,
∴f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴當(dāng)x=1時,f(x)取得最小值f(1)=0;
(II)由g(x)=ex﹣ax≥1恒成立可得ax+1≤ex恒成立,
設(shè)h(x)=ex,則h'(x)=ex,故h'(0)=1,h(0)=1,
∴函數(shù)y=h(x)在(0,1)處的切線方程為y=x+1,
∴x+1≤ex恒成立.
∴a=1;
(III)由(II)可知,x+1≤ex恒成立,
兩邊取對數(shù)得ln(x+1)≤x,令x(i=1,2,3…n)累加得
1,
所以原不等式成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)存在兩個零點(diǎn).
①實(shí)數(shù)的取值范圍;
②證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若存在,使得不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角中,,,點(diǎn)、分別是、的中點(diǎn).現(xiàn)沿邊折起成如圖四棱錐,為中點(diǎn).
(1)證明:面;
(2)當(dāng)時,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:
分?jǐn)?shù)不少于120分 | 分?jǐn)?shù)不足120分 | 合計 | |
線上學(xué)習(xí)時間不少于5小時 | 4 | 19 | |
線上學(xué)習(xí)時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;
(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
②若將頻率視為概率,從全校高三該次檢測數(shù)學(xué)成績不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時間不少于5小時的人數(shù)的期望和方差.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的3個紅球和3個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球。
(1)求取出的4個球中沒有紅球的概率;
(2)求取出的4個球中恰有1個紅球的概率;
(3)設(shè)為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:
AQI | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.
(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;
(ii)試問該企業(yè)7月、8月、9月這三個月因氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會超過2.88萬元?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品均需用三種原料,一件甲產(chǎn)品需要原料,原料,原料,一件乙產(chǎn)品需要原料,原料,原料,出售一件甲產(chǎn)品可獲利7萬元,出售一件乙產(chǎn)品可獲利6萬元,現(xiàn)有原料,原料,原料,請問該如何安排生產(chǎn)可使得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,長方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),于,于,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.
(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;
(2)試確定點(diǎn)在上的位置,使得四邊形材料的面積最小,并求出其最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com