13.算式$\sqrt{1.5}$•sin2945°•cos(-1110°)-(-$\frac{\sqrt{2}}{4}$)${\;}^{\frac{1}{3}}$•(lg0.2-2lg$\sqrt{2}$)=-$\frac{\sqrt{2}}{8}$.

分析 原式利用誘導(dǎo)公式,負(fù)指數(shù)冪法則,對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可得到結(jié)果.

解答 解:原式=$\sqrt{\frac{3}{2}}$•sin2(720°+180°+45°)•cos(-1080°-30°)+$\root{3}{\frac{\sqrt{2}}{4}}$•lg$\frac{0.2}{2}$
=$\frac{\sqrt{6}}{2}$×$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{2}}{2}$
=-$\frac{\sqrt{2}}{8}$.
故答案為:-$\frac{\sqrt{2}}{8}$.

點(diǎn)評(píng) 此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知φ,β均為銳角,cosφ=$\frac{3}{5}$,cos(φ+β)=-$\frac{5}{13}$,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC的三邊a,b,c所對(duì)的角分別為A,B,C,且a:b:c=7:5:3.
(1)求cosA的值;
(2)若△ABC外接圓的半徑為14,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求解不等式:$\sqrt{1+lgx}$>1-lgx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知8A${\;}_{x}^{5}$=3A${\;}_{x+1}^{5}$,則x=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(1-b)x2-2ax+b,當(dāng)0≤a≤$\frac{1}{2}$,a≤b時(shí),求證:f(x)≥0在x∈[-1,1]上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)y=x2的圖象與y=n(n>0)的圖象所圍成的封閉圖形的面積為$\frac{32}{3}$,則二項(xiàng)式(1-$\frac{n}{x}$)n的展開式中$\frac{1}{{x}^{2}}$的系數(shù)為96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知半橢圓C:$\frac{x^2}{a^2}+{y^2}=1({a>1,x≥0})$的離心率為$\frac{{\sqrt{3}}}{2}$,曲線C2是以半橢圓C1的短軸為直徑的圓在y軸右側(cè)的部分,點(diǎn)P(x0,y0)是曲線C2上的任意一點(diǎn),過點(diǎn)P且與曲線C2相切的直線l與半橢圓C1交于兩個(gè)不同點(diǎn)A、B.
(Ⅰ)求直線l的方程(用x0,y0表示);
(Ⅱ)求弦|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某同學(xué)利用圖形計(jì)算器對(duì)分段函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}+1{,_{\;}}x≤0\\ ln(x+k)-1{,_{\;}}x>0\end{array}$作了如下探究:

根據(jù)該同學(xué)的探究分析可得:當(dāng)k=-1時(shí),函數(shù)f(x)的零點(diǎn)所在區(qū)間為(3.69,3.75)(填第5行的a、b);若函數(shù)f(x)在R上為增函數(shù),則實(shí)數(shù)k的取值范圍是k≥e3

查看答案和解析>>

同步練習(xí)冊(cè)答案