14.已知a>0,b<0,且(4a-1)(2b+1)=-9,若(2a-b)x2-abx-6≥0總成立,則正實(shí)數(shù)x的取值范圍是[1,+∞).

分析 由(4a-1)(2b+1)=-9,a>0,b<0,可得2a-b=-4-4ab≥2$\sqrt{2a(-b)}$,可得-ab≥2.由于(2a-b)x2-abx-6≥0總成立,可得(-ab)min≥$\frac{6+4{x}^{2}}{4{x}^{2}+x}$,x>0.
解出即可得出.

解答 解:∵(4a-1)(2b+1)=-9,a>0,b<0,
∴2a-b=-4-4ab≥2$\sqrt{2a(-b)}$,化為:$(\sqrt{2a(-b)})^{2}$-$\sqrt{2a(-b)}$-2≥0,
解得-ab≥2,當(dāng)且僅當(dāng)2a=-b=2時(shí)取等號(hào).
∴(2a-b)x2-abx-6≥0化為:(-4-4ab)x2-abx-6≥0,
化為:-ab≥$\frac{6+4{x}^{2}}{4{x}^{2}+x}$,x>0.
由于(2a-b)x2-abx-6≥0總成立,∴(-ab)min≥$\frac{6+4{x}^{2}}{4{x}^{2}+x}$,x>0.
∴2≥$\frac{6+4{x}^{2}}{4{x}^{2}+x}$,x>0.
化為:2x2+x-3≥0,
解得x≥1.
∴正實(shí)數(shù)x的取值范圍是[1,+∞).
故答案為:[1,+∞).

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化方法、一元二次不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.-$\int{\begin{array}{l}2\\ 1\end{array}}$xdx=( 。
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知?jiǎng)訄A過(guò)定點(diǎn)$({0,\frac{1}{2}})$,且與直線y=-$\frac{1}{2}$相切.
(Ⅰ)求動(dòng)圓圓心的軌跡C的方程;
(Ⅱ)設(shè)Q是軌跡C上一點(diǎn),過(guò)Q作圓P:(x-6)2+y2=1的切線,其中A、B是切點(diǎn),若軌跡C在點(diǎn)Q處的切線與直線AB平行,求直線AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,則輸出的i是( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知[x]表示不超過(guò)x的最大整數(shù),則不等式組$\left\{\begin{array}{l}{y≤k(x-\frac{1}{2})+\frac{1}{2},k∈R}\\{[x]^{2}+[y]^{2}≤1}\end{array}\right.$表示的平面區(qū)域面積為s,那么s=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知定義域?yàn)镽的函數(shù)f(x)滿足f(x)=$\frac{1}{2}$f(x-6),當(dāng)x∈[0,6]時(shí),f(x)=$\sqrt{3-|x-3|}$,若關(guān)于x的方程f(x)=m(x+6)在區(qū)間[-6,+∞)內(nèi)恰有三個(gè)不等實(shí)根,則實(shí)數(shù)m的值為( 。
A.-$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{12}$C.$\frac{\sqrt{3}}{9}$D.以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn=3n-1.
(1)求a1,a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an}滿足a1=1,a2=-2,且an+1=an+an+2,n∈N*,則a5=2;數(shù)列{an}的前2016項(xiàng)和為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知各項(xiàng)為整數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,a1為首項(xiàng),公差為d,對(duì)任意n∈N*,當(dāng)n≠6時(shí),總有S6>Sn,則a1的最小值是( 。
A.9B.11C.15D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案