14.某單位有職工200人,其年齡分布如下表:
 年齡(歲)[20,30)[30,40)[40,60)
 人數(shù) 70 90 40
為了解該單位職工的身體健康狀況,用分層抽樣的方法抽取一個(gè)容量為40的樣本進(jìn)行調(diào)查,則年齡在[30,40)內(nèi)的職工應(yīng)抽取的人數(shù)為18.

分析 利用分層抽樣原理進(jìn)行求解即可.

解答 解:由已知得,用分層抽樣的方法抽取一個(gè)容量為40的樣本進(jìn)行調(diào)查,
年齡在[30,40]內(nèi)的職工應(yīng)抽取的人數(shù)為:40×$\frac{90}{200}$=18.
故答案為:18.

點(diǎn)評(píng) 本題考查了分層抽樣中應(yīng)抽取人數(shù)的問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{|{x}^{2}+4x+3|,x≤0}\end{array}\right.$若關(guān)于x的方程f2(x)+bf(x)+4=0有8個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)b的取值范圍是( 。
A.[-$\frac{17}{4}$,-4)∪{-5}B.[-$\frac{13}{3}$,-4)∪{-5}C.[-5,-$\frac{13}{3}$]D.[-5,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x>2}\\{lo{g}_{\frac{1}{2}}(\frac{9}{4}-x)+{a}^{2},x≤2}\end{array}\right.$,若f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-1]∪[2,+∞)B.[-1,2]C.(-∞,-2]∪[1,+∞)D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{2}$sinωx+$\frac{\sqrt{3}}{2}$cosωx(ω>0)的周期為π.
(Ⅰ)求ω的值,并在下面提供的坐標(biāo)系中畫(huà)出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(Ⅱ)函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過(guò)怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{2}{x}-2,x≥1}\\{lo{g}_{3}({x}^{2}+1),x<1}\end{array}\right.$,則$f(f(-\sqrt{2}))$=1;f(x)的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若實(shí)數(shù)x,y,z滿足x2+y2+z2=1.
(1)若x+y+z=0,求yz的最小值;
(2)求證:-$\frac{1}{2}$≤xy+yz+zx≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)a>0,b>0,則( 。
A.若a-lnb>b-lna,則a<bB.若a-lnb>b-lna,則a>b
C.若a+lnb>b+lna,則a<bD.若a+lnb>b+lna,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知不等式組$\left\{\begin{array}{l}y≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$表示的平面區(qū)域?yàn)镈.若直線y=a(x+1)與區(qū)域D有公共點(diǎn),則實(shí)數(shù)a的取值范圍是$[0,\frac{3}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知圓C:(x-m+1)2+(y-m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m的取值范圍[0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案