10.曲線 y=3lnx+$\frac{1}{x}$在點(diǎn)(1,1)處的切線方程為y=2x-1.

分析 先求出導(dǎo)函數(shù),然后利用導(dǎo)數(shù)的幾何意義求出切線斜率k=y′|x=1,利用點(diǎn)斜式即可寫(xiě)出切線方程.

解答 解:∵y=3lnx+$\frac{1}{x}$,
∴y′=$\frac{3}{x}$-$\frac{1}{{x}^{2}}$,則切線斜率k=y′|x=1=2,
∴在點(diǎn)(1,1)處的切線方程為:y-1=2(x-1),
即y=2x-1.
故答案為:y=2x-1.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查直線方程的求法,考查導(dǎo)數(shù)的幾何意義,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一個(gè)圓的圓心在拋物線y2=4x上,且該圓經(jīng)過(guò)拋物線的頂點(diǎn)和焦點(diǎn),若圓心在第一象限,圓心到直線ax+y-$\sqrt{2}$=0的距離為$\frac{\sqrt{2}}{4}$,則a=(  )
A.1B.-1C.±1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如果函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,都有f(x)=f(1-x),且當(dāng)$x≥\frac{1}{2}$時(shí),f(x)=log2(3x-1),那么函數(shù)f(x)在[-2,0]的最大值與最小值之差為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=x2-2x,g(x)=lnx,函數(shù)F(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,則函數(shù) F(x)的所有零點(diǎn)的和為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(3,1)$\overrightarrow$=(-6,k),若$\overrightarrow{a}$∥$\overrightarrow$,則k=(  )
A.-2B.-6C.18D.-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知數(shù)列1,2,1,3,2,1,4,3,2,1,5,4,3,2,1…,則此數(shù)列的第60項(xiàng)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\root{3}{x}$+1,則$\underset{lim}{△x→0}$$\frac{f(1-△x)-f(1)}{△x}$=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類(lèi)體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
非體育迷體育迷合計(jì)
1055
合計(jì)
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱(chēng)為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體
育迷”與性別有關(guān)?
(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進(jìn)行訪談,被抽取的2名觀眾中至少有一名女生的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.${∫}_{-1}^{2}$|x|dx等于( 。
A.-1B.1C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案