1.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,若bsinA=3csinB,a=3,$cosB=\frac{2}{3}$,則b=( 。
A.14B.6C.$\sqrt{14}$D.$\sqrt{6}$

分析 bsinA=3csinB,利用正弦定理可得ab=3cb,化簡(jiǎn)解得c,再利用余弦定理即可得出.

解答 解:在△ABC中,∵bsinA=3csinB,
∴ab=3cb,可得a=3c,
∵a=3,∴c=1.
∴$cosB=\frac{2}{3}$=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{9+1-^{2}}{2×3×1}$,
解得b=$\sqrt{6}$.
故選:D.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.正方體ABCD-A1B1C1D1的棱長(zhǎng)為$\sqrt{3}$,在正方體表面上與點(diǎn)A距離是2的點(diǎn)形成一條封閉的曲線,這條曲線的長(zhǎng)度是( 。
A.πB.$\frac{3}{2}π$C.D.$\frac{5}{2}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)x∈(0,π),若$\frac{1}{sinx}+\frac{1}{cosx}=2\sqrt{2}$,則$sin(2x+\frac{π}{3})$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)(x∈R),則最小正周期T=π;單調(diào)遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,在矩形ABCD中,AB=2AD,E,F(xiàn)分別為BC,CD的中點(diǎn),G為EF中點(diǎn),
則$\overrightarrow{AG}$=( 。
A.$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$B.$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$C.$\frac{3}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AD}$D.$\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在銳角△ABC中,sinA=sin2B+sin($\frac{π}{4}$+B)sin($\frac{π}{4}$-B).
(1)求角A的值;
(2)若$\overrightarrow{AB}$$•\overrightarrow{AC}$=12,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)實(shí)數(shù)p在[0,2]上隨機(jī)地取值,則關(guān)于x的方程x2+2x+p=0有實(shí)根的概率為0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y-1≤0}\\{y≥0}\end{array}\right.$,則z=y-2x的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.條件“|a|<1,|b|<1”是“|a+b|+|a-b|<2”成立的充要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案