分析 利用平面向量的線性表示和數(shù)量積,結(jié)合勾股定理,即可證明結(jié)論成立.
解答 證明:Rt△CAB中,AD是斜邊BC上的中線,如圖所示;
∴$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴${\overrightarrow{AD}}^{2}$=$\frac{1}{4}$(${\overrightarrow{AB}}^{2}$+2$\overrightarrow{AB}$•$\overrightarrow{AC}$+${\overrightarrow{AC}}^{2}$)=$\frac{1}{4}$(${\overrightarrow{AB}}^{2}$+${\overrightarrow{AC}}^{2}$),
∴|$\overrightarrow{AD}$|=$\frac{1}{2}$$\sqrt{{\overrightarrow{|AB|}}^{2}{+\overrightarrow{|AC|}}^{2}}$
${\overrightarrow{|AB|}}^{2}$+${\overrightarrow{|AC|}}^{2}$=${\overrightarrow{|BC|}}^{2}$
∴|$\overrightarrow{AD}$|=$\frac{1}{2}$|$\overrightarrow{BC}$|.
點(diǎn)評(píng) 本題考查了平面向量的應(yīng)用問(wèn)題,也考查了勾股定理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | N?Q?Z?R | B. | N?Z?Q?R | C. | R?Q?Z?N | D. | Z?N?Q?R |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com