10.設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c,2sinCsinB=sinB-sin(A-C).
(I)判斷△ABC的形狀;
(Ⅱ)當(dāng)B為鈍角時(shí),求sinA+sinC的取值范圍.

分析 (I)由誘導(dǎo)公式和和差化積公式對已知等式進(jìn)行變形處理得到:sinB=cosA=sin($\frac{π}{2}$+A)=sin($\frac{π}{2}$-A),易得該三角形的形狀;
(Ⅱ)B-A=$\frac{π}{2}$且B為鈍角,可得A=B-$\frac{π}{2}$,C=π-A-B=$\frac{3π}{2}$-2B,B∈( $\frac{π}{2}$,π).可得cosB∈(-1,0).sinA+sinC=-2(cosB-$\frac{1}{4}$)2+$\frac{9}{8}$=f(B),再利用二次函數(shù)的單調(diào)性即可得出.

解答 解:(I)2sinCsinB=sinB-sin(A-C)=sin(A+C)-sin(A-C)=2cosAsinC.
∵sinC≠0,
∴sinB=cosA=sin($\frac{π}{2}$+A)=sin($\frac{π}{2}$-A),
①A+B=$\frac{π}{2}$,則△ABC為直角三角形;
②B=$\frac{π}{2}$+A,則△ABC為鈍角三角形;
(Ⅱ):∵B-A=$\frac{π}{2}$且B為鈍角,
∴A=B-$\frac{π}{2}$,C=π-A-B=π-(B-$\frac{π}{2}$)-B=$\frac{3π}{2}$-2B,B∈($\frac{π}{2}$,π).
∴cosB∈(-1,0).
sinA+sinC=sin(B-$\frac{π}{2}$)+sin($\frac{3π}{2}$-2B)=-cosB-cos2B=-2cos2B-cosB+1
=-2(cosB-$\frac{1}{4}$)2+$\frac{9}{8}$=f(B),
∴f(B)∈(0,1).
∴sinA+sinC的取值范圍是(0,1).

點(diǎn)評 本題考查了誘導(dǎo)公式、三角函數(shù)的單調(diào)性、二次函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x+y+3=0,則$\sqrt{(x-2)^{2}+(y-1)^{3}}$的最小值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知(1+x)3+(1+x)4+…+(1+x)n+2的展開式中含x2項(xiàng)的系數(shù)是11n
(1)求n的值;
(2)求(2x+$\frac{1}{x}$)2n的展開式中,系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a+3)x+b在R上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.-2≤a≤6B.a≤-2或a≥6C.-2<a<6D.a<-2或a>6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,則sin(2α-$\frac{π}{6}$)的值為( 。
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.±$\frac{2\sqrt{2}}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,已知a=5,b=4,cos(A-B)=$\frac{31}{32}$,則cosC=$\frac{1}{8}$,AB=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個(gè)六面體的三視圖如圖所示,其側(cè)視圖是邊長為2的正方形,則該六面體的表面積是(  )
A.$18+2\sqrt{5}$B.$16+2\sqrt{5}$C.$14+2\sqrt{5}$D.$12+2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且acosA=bcosB,則(  )
A.△ABC為等腰三角形B.△ABC為等腰三角形或直角三角形
C.△ABC為等腰直角三角形D.△ABC為直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某省高考改革實(shí)施方案指出:該省高考考生總成績將由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績和學(xué)生自主選擇的學(xué)業(yè)水平等級性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長對高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?
贊成不贊成合計(jì)
城鎮(zhèn)居民
農(nóng)村居民
合計(jì)
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=a+b+c+d$
P(K2≥k00.100.050.005
k02.7063.8417.879
(2)用樣本的頻率估計(jì)概率,若隨機(jī)在全省不贊成高考改革的家長中抽取3個(gè),記這3個(gè)家長中是城鎮(zhèn)戶口的人數(shù)為x,試求x的分布列及數(shù)學(xué)期望E(x).

查看答案和解析>>

同步練習(xí)冊答案