11.如圖程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0,則輸出a和i的值分別為( 。
A.0,3B.0,4C.2,3D.2,4

分析 由循環(huán)結(jié)構(gòu)的特點(diǎn),先判斷,再執(zhí)行,分別計(jì)算出當(dāng)前的a,b,i的值,即可得到結(jié)論.

解答 解:模擬執(zhí)行程序框圖,可得:a=6,b=8,i=0,
i=1,不滿足a>b,不滿足a=b,b=8-6=2,i=2
滿足a>b,a=6-2=4,i=3
滿足a>b,a=4-2=2,i=4
不滿足a>b,滿足a=b,輸出a的值為2,i的值為4.
故選:D.

點(diǎn)評(píng) 本題考查算法和程序框圖,主要考查循環(huán)結(jié)構(gòu)的理解和運(yùn)用,以及賦值語句的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a,b,c,且4cosB-3=2cos2B.
(1)求sinB的值;
(2)若|$\overrightarrow{BA}$-$\frac{1}{2}$$\overrightarrow{BC}$|=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù))
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求MN的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果是(  )
A.-$\sqrt{3}$B.0C.$\sqrt{3}$D.$336\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知四面體ABCD的外接球球心O在棱CD上,$AB=\sqrt{3}$,CD=2,則A、B兩點(diǎn)在四面體ABCD的外接球上的球面距離是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知a1=2,對(duì)任意n∈N*,都有2Sn=(n+1)an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{$\frac{4}{{a}_{n}({a}_{n}+2)}$}的前n項(xiàng)和為Tn,求證:$\frac{1}{2}$≤Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.△ABC中,∠A=120°,∠A的平分線AD交邊BC于D,且AB=2,CD=2DB,則AD的長為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在R上的偶函數(shù).當(dāng)x≥0時(shí),f(x)=$\frac{2x-3}{x+1}$,則不等式f(lnx)<l的解集為($\frac{1}{{e}^{4}}$,e4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.△ABC中,已知A=90°,$\overrightarrow{AB}$=(k,6),$\overrightarrow{AC}$=(-2,3),則k的值是( 。
A.-4B.-3C.4D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案