7.某班從甲、乙等7名學(xué)生中選4人參加校運(yùn)會(huì)接力比賽,要求甲、乙兩人至少有一人參賽,若甲、乙都參賽,則他們不能跑相鄰兩棒,那么安排接力順序的不同方式有( 。
A.360種B.520種C.600種D.720種

分析 根據(jù)題意,分2種情況討論:①、甲、乙兩人只有一人參賽,②、甲、乙兩人同時(shí)參賽,求出每一種情況的安排方法數(shù)目,由分類加法原理計(jì)算可得答案.

解答 解:根據(jù)題意,分2種情況討論:
①、甲、乙兩人只有一人參賽,從其他5人中選3人,再與甲進(jìn)行全排列即可,
有C21C53A44=480種,
②、甲、乙兩人同時(shí)參賽,從其他5人中選2人排列,排好后形成了3個(gè)空,在3個(gè)空位中任選2個(gè),把甲乙兩人插入,
故有A52A32=120種,
則有480+120=600種不同的安排方法;
故選:C.

點(diǎn)評(píng) 本題考查排列、組合的應(yīng)用,關(guān)鍵是根據(jù)題意正確分類討論,以及不相鄰用插空,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在四棱錐P-ABCD中,底面ABCD為平行四邊形,G為PB的中點(diǎn),則三棱錐D-GAB與三棱錐P-GAC體積之比為1:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線3x+$\sqrt{3}$y+1=0的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=$\frac{x}{1+x}$,設(shè)f1(x)=f(x),fn(x)=fn-1[f1(x)],n=1,2,3…
(Ⅰ)求f2(x),f3(x)的表達(dá)式;
(Ⅱ)猜想fn(x)的表達(dá)式;并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果某年年份的各位數(shù)字之和為8,我們稱該年為“吉祥年”.例如,今年2015年的各數(shù)字之和為8,所以今年恰為“吉祥年”,那么從2000年到3999年中“吉祥年“共有(  )個(gè).
A.42B.43C.49D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某種樹木的底部周長(zhǎng)的取值范圍是[80,130],它的頻率分布直方圖如圖所示,若在抽測(cè)的n株樹木中,樹木的底部周長(zhǎng)小于100的樹有120株,則n=( 。
A.120B.200C.300D.500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在區(qū)間(0,1)內(nèi)為增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.[2,+∞)B.(0,2)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)圖象的一部分,對(duì)不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,則φ的值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.甲、乙兩企業(yè)生產(chǎn)同一種型號(hào)零件,按規(guī)定該型號(hào)零件的質(zhì)量指標(biāo)值落在[45,75)內(nèi)為優(yōu)質(zhì)品,從兩個(gè)企業(yè)生產(chǎn)的零件中各隨機(jī)抽出了500件,測(cè)量這些零件的質(zhì)量指標(biāo)值,得結(jié)果如表:
甲企業(yè):
 分組[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 頻數(shù) 10 40 115 165 120 45 5
乙企業(yè):
分組[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 頻數(shù) 5 60 110 160 90 70 5
(1)已知甲企業(yè)的500件產(chǎn)品質(zhì)量指標(biāo)值的樣本方差s2=142,該企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值X服從正態(tài)分布N(μ,σ2),其中μ近似為質(zhì)量指標(biāo)值的樣本平均數(shù)$\overline{x}$(注:求$\overline{x}$時(shí),同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),σ2近似為樣本方差s2,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計(jì)所生產(chǎn)的零件中,質(zhì)量指標(biāo)值不低于71.92的產(chǎn)品的概率(精確到0.001)
(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并問能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”
  甲廠乙廠 合計(jì) 
 優(yōu)質(zhì)品   
 非優(yōu)質(zhì)品   
 合計(jì)   
附注:
參考數(shù)據(jù):$\sqrt{142}$≈11.92
參考公式:P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545,P(μ-3σ<X<μ+3σ)=0.9973.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.0722.706 3.841 5.024 6.635 7.879 10.828 

查看答案和解析>>

同步練習(xí)冊(cè)答案