19.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在區(qū)間(0,1)內(nèi)為增函數(shù),則實數(shù)a的取值范圍是( 。
A.[2,+∞)B.(0,2)C.(-∞,2)D.(-∞,2]

分析 求出原函數(shù)的導(dǎo)函數(shù),由題意可得f′(x)=x2-ax+1≥0對任意x∈(0,1)恒成立,分離參數(shù)a后,利用函數(shù)單調(diào)性求出$\frac{{x}^{2}+1}{x}$的范圍得答案.

解答 解:由f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x,得
f′(x)=x2-ax+1,
∵函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在區(qū)間(0,1)內(nèi)為增函數(shù),
∴f′(x)=x2-ax+1≥0對任意x∈(0,1)恒成立,
即a≤$\frac{{x}^{2}+1}{x}$在x∈(0,1)上恒成立,
∵$\frac{{x}^{2}+1}{x}=x+\frac{1}{x}$在(0,1)上為減函數(shù),
∴$\frac{{x}^{2}+1}{x}=x+\frac{1}{x}$>2,
則a≤2.
∴實數(shù)a的取值范圍是(-∞,2].
故選:D.

點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,訓(xùn)練了利用函數(shù)單調(diào)性求函數(shù)的最值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\frac{3-a}{4}$和4的等比中項為$\sqrt{2}$b,且a>1,則$\frac{2}{a-1}$$+\frac{1}{^{2}}$的最小值為( 。
A.4B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.有一個幾何體的三視圖及其尺寸如圖(單位cm),則該幾何體的側(cè)面積及體積為( 。
A.24πcm2,12πcm3B.15πcm2,36πcm3C.15πcm2,12πcm3D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某班從甲、乙等7名學(xué)生中選4人參加校運會接力比賽,要求甲、乙兩人至少有一人參賽,若甲、乙都參賽,則他們不能跑相鄰兩棒,那么安排接力順序的不同方式有( 。
A.360種B.520種C.600種D.720種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.根據(jù)下表提供的數(shù)據(jù),由散點圖可知,y與x具有較好的線性相關(guān)關(guān)系,其線性回歸方程為$\widehat{y}$=-0.7x+5.25,那么表中t的值為( 。
x1234
y4.54t2.5
A.3B.3.15C.3.5D.4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的前n項和為Sn,且an+Sn=1,n∈N*,則a1=$\frac{1}{2}$;an=$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-$\frac{1}{2}$|+|2x+1|.
(Ⅰ)求函數(shù)f(x)的最小值m;
(Ⅱ)若正實數(shù)a,b滿足$\frac{1}{a}$+$\frac{2}$=m,且|x-2|≤a+2b對任意的正實數(shù)a,b恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在△ABC中,D為線段BC的中點,E,F(xiàn),G依次為線段AD從上至下的3個四等分點,若$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AP}$,則(  )
A.點P與圖中的點D重合B.點P與圖中的點E重合
C.點P與圖中的點F重合D.點P與圖中的點G重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,平面PAC⊥平面PAB,△PAC為等邊三角形,AB⊥PB且AB=PB=$\sqrt{2}$,O為PA的中點,點M在AC上.
(1)求證:平面BOM⊥平面PAC;
(2)求點P到平面ABC的距離.

查看答案和解析>>

同步練習(xí)冊答案