已知sin(α-
π
8
)=
3
5
,
8
<α<
8
,求2sinα(sinα+cosα)-1的值.
考點:兩角和與差的正弦函數(shù),三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:根據(jù)題意求得cos(α-
π
8
)的值,進(jìn)而利用二倍角公式和兩角和公式對原式進(jìn)行化簡,代入sin(α-
π
8
)和cos(α-
π
8
)的值.
解答: 解:∵
π
2
<α-
π
8
<π

cos(α-
π
8
)=-
4
5

2sinα(sinα+cosα)-1=
2
sin(2α-
π
4
)=2
2
sin(α-
π
8
)sin(α-
π
8
)=-
24
2
25
點評:本題主要考查了兩角和與差的正弦函數(shù).解題的過程中要特別注意角的范圍,進(jìn)而確定三角函數(shù)的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
,
c
是同一平面內(nèi)的三個向量,其中
a
=(1,2)
(1)若|
c
|=2
5
,且
c
a
,求c的坐標(biāo);
(2)若|
b
|=
3
2
,且
a
+2
b
a
-
b
垂直,求
a
b
的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),且
a
b
滿足關(guān)系|k
a
+
b
|=
3
|
a
-k
b
|,(k為正實數(shù)).
(1)求將
a
b
表示為k的函數(shù)f(k);
(2)求函數(shù)f(k)的最小值及取最小值時
a
 , 
b
的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABO是以AB為斜邊的等腰直角三角形,OD⊥平面ABO,BC∥OD,且OD=2BC=2OA=2,E是AD中點,
(Ⅰ)求證:CE∥平面ABO;
(Ⅱ)求三棱錐E-ABC的體積VE-ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求lg
1
4
-lg25+ln
e
+21+log23的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=4x2+8x-3.
(1)指出函數(shù)y=f(x)圖象的開口方向、對稱軸方程、頂點坐標(biāo);
(2)求y=f(x)的最小值;
(3)寫出函數(shù)y=f(x)的單調(diào)區(qū)間.
(4)當(dāng)x∈[0,2]時,求函數(shù)y=f(x)的最大植和最小植.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y3040605070
(Ⅰ)畫出散點圖;
(Ⅱ)求回歸直線方程;
(Ⅲ)試預(yù)測廣告費支出為10百萬元時,銷售額多大?
(可能用到的公式:
b
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x
,其中
?
a
、
?
b
是對回歸直線方程
y
=a+bx中系數(shù)a、b按最小二乘法求得的估計值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|x2-6|≥6,q:x∈z,且“p∧q”與“?q”同時為假命題,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-2
-
x+2
,判斷f(x)的奇偶性.

查看答案和解析>>

同步練習(xí)冊答案