分析 a1>1,an+1=an2-an+1(n∈N*),變形為an+1-1=an(an-1),兩邊取倒數(shù)可得:$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n}}$,即$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$,利用“裂項(xiàng)求和”方法、基本不等式的性質(zhì)即可得出.
解答 解:∵a1>1,an+1=an2-an+1(n∈N*),
∴an+1-1=an(an-1),
兩邊取倒數(shù)可得:$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n}}$,即$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$,
∴2=$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=$(\frac{1}{{a}_{1}-1}-\frac{1}{{a}_{2}-1})$+$(\frac{1}{{a}_{2}-1}-\frac{1}{{a}_{3}-1})$+…+$(\frac{1}{{a}_{2015}-1}-\frac{1}{{a}_{2016}-1})$=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{2016}-1}$,
化為:a2016=$\frac{2-{a}_{1}}{3-2{a}_{1}}$,
∴a2016-4a1=$\frac{2-{a}_{1}}{3-2{a}_{1}}$-4a1=$\frac{1}{6-4{a}_{1}}$+(6-4a1)-$\frac{11}{2}$≥2-$\frac{11}{2}$=-$\frac{7}{2}$.當(dāng)且僅當(dāng)a1=$\frac{5}{4}$>1時(shí)取等號(hào).
∴a1的值為:$\frac{5}{4}$.
故答案為:$\frac{5}{4}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、“裂項(xiàng)求和”方法、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {4} | B. | {1,5,7} | C. | {1,2,5,7,8} | D. | {1,2,4,5,7,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com