2.已知點P,Q的坐標分別為(-1,1),(2,2),若直線l:x+my+m=0與PQ的延長線相交,則實數(shù)m的取值范圍是-3<m<-$\frac{2}{3}$.

分析 先求出PQ的斜率,再分情況討論出直線的幾種特殊情況,綜合即可得到答案.

解答 解:由題知kPQ=$\frac{2-1}{2-(-1)}$=$\frac{1}{3}$,
直線x+my+m=0過點M(0,-1).
當m=0時,直線化為x=0,一定與PQ相交,所以m≠0,
當m≠0時,kl=-$\frac{1}{m}$,考慮直線l的兩個極限位置.
(1)l經(jīng)過Q,即直線l1,則${k}_{{l}_{1}}$=$\frac{2-(-1)}{2-0}$=$\frac{3}{2}$;
(2)l與PQ平行,即直線l2,則${k}_{{l}_{2}}$=kPQ=$\frac{1}{3}$,
∴$\frac{1}{3}$<-$\frac{1}{m}$<$\frac{3}{2}$,
∴-3<m<-$\frac{2}{3}$,
故答案為:-3<m<-$\frac{2}{3}$.

點評 本題主要是考查直線之間的位置關(guān)系.其中涉及到分類討論思想的應用,屬于基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知sinα=$\frac{3}{5}$,且α為第二象限角,計算:
(1)$cos({α-\frac{π}{4}})$;
(2)sin2$\frac{α}{2}+\frac{sin4αcos2α}{1+cos4α}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知cos(θ-$\frac{π}{4}$)=$\frac{3}{5}$,θ∈(-$\frac{π}{4}$,$\frac{π}{4}$),則cosθ=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=$\frac{k}{x}$(x<0)的圖象交于點A,與x軸、y軸分別交于點B、C,過點A作AD⊥x軸于點D,過點D作DE∥AB,交y軸于點E,已知四邊形ADEC的面積為6.
(1)求k的值;
(2)若AD=3OC,tan∠DAC=2,求點E的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在數(shù)列{an}中,已知a1>1,an+1=an2-an+1(n∈N*),且$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=2.則當a2016-4a1取得最小值時,a1的值為=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知角α的終邊經(jīng)過一點P(1,4$\sqrt{3}$),cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$.
(1)求tanα+tan2α的值;(2)求β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知變量x,y滿足線性約束條件$\left\{\begin{array}{l}{x+y+1≥0}\\{x-y+2≥0}\\{3x+y-2≤0}\end{array}\right.$,若目標函數(shù)z=ax-y僅在點(0,2)處取得最小值,則實數(shù)a的取值范圍是(  )
A.(-∞,-3)B.(3,+∞)C.(-3,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|x2-1<0},則A∩B=(  )
A.B.{x|0≤x<1}C.{x|x≥0}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,若輸入的a,b,k分別為1,2,4,則輸出的M=( 。
A.$\frac{8}{3}$B.$\frac{15}{8}$C.$\frac{16}{5}$D.$\frac{20}{3}$

查看答案和解析>>

同步練習冊答案