9.設(shè)x,y∈R,則“x>y>0”是“$\frac{x}{y}$>1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 “x>y>0”⇒“$\frac{x}{y}$>1”,反之不成立,例如取x=-2,y=-1,即可判斷出結(jié)論.

解答 解:“x>y>0”⇒“$\frac{x}{y}$>1”,反之不成立,例如取x=-2,y=-1,
因此“x>y>0”是“$\frac{x}{y}$>1”的充分不必要條件.
故選:A.

點評 本題考查了不等式的性質(zhì)、充要條件的判定,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.98和63的最大公約數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\vec a=(2,-3,1)$,$\vec b=(-5,y,-2)$且$\overrightarrow a⊥\overrightarrow b$,則y=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:萬元)對年銷售量y(單位:噸)的影響,為此對近6年的年宣傳費x(單位:萬元)和年銷售量y(單位:噸)的數(shù)據(jù)進行整理,得如下統(tǒng)計表:
x(萬元)234.557.58
y(噸)33.53.5467
(Ⅰ)由表中數(shù)據(jù)求得線性回歸方程$\hat y=\hat bx+\hat a$中的$\hat b≈0.6$,試求出$\hat a$的值;
(Ⅱ)已知這種產(chǎn)品的年利潤z(單位:萬元)與x、y之間的關(guān)系為z=30y-x2,根據(jù)(Ⅰ)中所求的回歸方程,求年宣傳費x為何值時,年利潤z的預(yù)估值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元)0.250.5124
銷量y(件)1612521
(1)根據(jù)上面的數(shù)據(jù)判斷,y=ax+b與y=$\frac{c}{x}$+d哪一個適宜作為產(chǎn)品銷量y關(guān)于單價x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(計算結(jié)果保留兩位小數(shù))

參考公式其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法錯誤的是(  )
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.若命題p:“?x∈R,x2-x-1>0”,則命題p的否定為“?x∈R,x2-x-1≤0”
C.“x=1”是“x2+5x-6=0”的充分不必要條件
D.“a=1”是“直線x-ay=0與直線x+ay=0互為垂直”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)a滿足|a|<2,則事件“點M(1,1)與N(2,0)分別位于直線l:ax-2y+1=0兩側(cè)”的概率為( 。
A.$\frac{3}{4}$B.$\frac{1}{8}$C.$\frac{3}{8}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=2cos(ωx+φ)+1(ω>0,|φ|<$\frac{π}{2}$),其圖象與直線y=3相鄰兩個交點的距離為$\frac{2π}{3}$,若f(x)>1對?x∈(-$\frac{π}{12}$,$\frac{π}{6}$)恒成立,則φ的取值范圍是( 。
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[-$\frac{π}{4}$,0]C.(-$\frac{π}{3}$,-$\frac{π}{12}$]D.[0,$\frac{π}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一個平放的棱長為4的三棱錐內(nèi)有一小球O(重量忽略不計),現(xiàn)從該三棱錐頂端向內(nèi)注水,小球慢慢上浮,若注入的水的體積是該三棱錐體積的$\frac{7}{8}$時,小球與該三棱錐各側(cè)面均相切(與水面也相切),則球的表面積等于( 。
A.$\frac{7}{6}$πB.$\frac{4}{3}$πC.$\frac{2}{3}$πD.$\frac{1}{2}$π

查看答案和解析>>

同步練習(xí)冊答案