7.方程x2+2x+n2=0(n∈[-1,2])有實根的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

分析 根據(jù)方程有實根△≥0,得到n的范圍,利用幾何概型的概率求法解答.

解答 解:方程x2+2x+n2=0有實根,
則△=4-4n2≥0,解得-1≤n≤1,n∈[-1,2]的區(qū)間長度為3,
n∈[-1,1]的區(qū)間長度為2,
所以方程x2+2x+n2=0(n∈[-1,2])有實根的概率為$\frac{2}{3}$,
故選A.

點評 本題考查了幾何概型的概率求法;幾何概型的概率的值是通過長度、面積、和體積的比值得到.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過點P(2,-1)且傾斜角為$\frac{π}{4}$的直線方程是(  )
A.x-y+1=0B.$\sqrt{2}$x-2y-$\sqrt{2}$-2=0C.x-y-3=0D.$\sqrt{2}$x-2y+$\sqrt{2}$+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.當生物死亡后,其體內(nèi)原有的碳14的含量大約每經(jīng)過5730年衰減為原來的一半,這個時間稱為“半衰期”.當死亡生物體內(nèi)的碳14含量不足死亡前的千分之一時,用一般的放射性探測器就測不到了.若某死亡生物體內(nèi)的碳14用該放射性探測器探測不到,則它經(jīng)過的“半衰期”個數(shù)至少是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知矩形ABCD的周長為18,把它沿圖中的虛線折成正六棱柱,當這個正六棱柱的體積最大時,它的外接球的表面積為( 。
A.13πB.12πC.11πD.10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)橢圓$M:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)經(jīng)過點$P(1,\sqrt{2})$,其離心率與雙曲線x2-y2=1的離心率互為倒數(shù).
(Ⅰ)求橢圓M的方程;
(Ⅱ) 動直線$l:y=\sqrt{2}x+m$交橢圓M于A、B兩點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{e^x}+a{x^2},x>0\\ \frac{1}{e^x}+a{x^2},x<0\end{array}$,若函數(shù)f(x)有四個零點,則實數(shù)a的取值范圍是( 。
A.(-∞,-e)B.(-∞,-$\frac{{e}^{2}}{4}$)C.(-∞,-$\frac{{e}^{3}}{9}$)D.(-∞,-$\frac{{e}^{4}}{16}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)=-2x+x+m,則f(-2)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=lgx,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),r=$\frac{1}{2}$[f(a)+f(b)],則p,q,r的大小關(guān)系是( 。
A.p=r>qB.p=r<qC.q=r<pD.q-r>p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y={log_a}({2{x^2}-3x+1})$,當x=3時,y<0則該函數(shù)的單調(diào)遞減區(qū)間是(  )
A.$({-∞,\frac{3}{4}})$B.$({\frac{3}{4},+∞})$C.$({-∞,\frac{1}{2}})$D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案