分析 根據(jù)函數(shù)f(x)=1+$\frac{m}{{e}^{x}+1}$是奇函數(shù),則f(0)=0,可得m的值,進而根據(jù)指數(shù)函數(shù)的圖象和性質,得到函數(shù)的值域.
解答 解:若函數(shù)f(x)=1+$\frac{m}{{e}^{x}+1}$是奇函數(shù),
則f(0)=1+$\frac{m}{2}$=0,
解得:m=-2,
經檢驗當m=-2時,f(x)=$1+\frac{-2}{{e}^{x}+1}$,滿足f(-x)=-f(x);
由$\frac{-2}{{e}^{x}+1}$∈(-2,0),可得f(x)=$1+\frac{-2}{{e}^{x}+1}$∈(-1,1),
即f(x)=$1+\frac{-2}{{e}^{x}+1}$的值域為:(-1,1),
故答案為:-2,(-1,1)
點評 本題考查的知識點是函數(shù)奇偶性的性質,熟練掌握函數(shù)奇偶性的性質,是解答的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 3$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1] | B. | (0,$\frac{\sqrt{6}}{2}$] | C. | (0,$\sqrt{2}$] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-x+1 | B. | y=$\sqrt{x}$ | C. | y=x2-4x+5 | D. | y=$\frac{2}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com