7.在△ABC中,b=5,B=$\frac{π}{4}$,sinA=$\frac{2\sqrt{5}}{5}$,則a的值是( 。
A.10$\sqrt{2}$B.2$\sqrt{10}$C.$\sqrt{10}$D.$\sqrt{2}$

分析 由已知利用正弦定理即可計(jì)算得解.

解答 解:在△ABC中,∵b=5,B=$\frac{π}{4}$,sinA=$\frac{2\sqrt{5}}{5}$,
∴利用正弦定理可得:a=$\frac{bsinA}{sinB}$=$\frac{5×\frac{2\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{10}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)y=tan(x+$\frac{π}{3}$).
(1)求f(x)的定義域;
(2)求f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.過(guò)點(diǎn)P(1,3),與直線2x-5y+1=0平行的直線的點(diǎn)向式方程是$\frac{x-1}{5}=\frac{y-3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=2x2一4x-1.
(1)若將f(x)的圖象向右移動(dòng)2個(gè)單位,再向下移動(dòng)1個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的解析式;
(2)寫(xiě)出函數(shù)y=g(|x|)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知α,b∈R,集合A={a,$\frac{a}$,1},B={a2,a+b,0},若A=B,則α+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若正數(shù)a,b滿足a2b=$\frac{1}{2}$,則a+b的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.2π+$\frac{4}{3}$B.4π+$\frac{4}{3}$C.4π+4D.2π+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1的焦點(diǎn)F1、F2在x軸上,離心率為$\frac{1}{3}$,若弦AB經(jīng)過(guò)焦點(diǎn)F1,則△ABF2的周長(zhǎng)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知A是△BCD所在平面外一點(diǎn),∠ABD=∠ACD=90°,AB=AC,E是BC的中點(diǎn),求證:AD⊥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案