19.設(shè)等差數(shù)列{an}的前n項和為Sn,若2a6=6+a7,則S9的值是54.

分析 先利用等差數(shù)列的通項公式求出a5=6,再利用等差數(shù)前n項和公式S9=$\frac{9}{2}×({a}_{1}+{a}_{9})$=9a5求解.

解答 解:∵等差數(shù)列{an}的前n項和為Sn,2a6=6+a7,
∴2(a1+5d)=6+a1+6d,
∴a1+4d=a5=6,
∴S9=$\frac{9}{2}×({a}_{1}+{a}_{9})$=9a5=9×6=54.
故答案為:54.

點評 本題考查等差數(shù)列的前9項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC的面積為1,tanB=$\frac{1}{2}$,tanC=-2,求△ABC外接圓的面積以及△ABC的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.當(dāng)點P(3,2)到直線mx-y+1-2m=0的距離最大值時,m的值為(  )
A.$\sqrt{2}$B.0C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知M,N是圓A:x2+y2-2x=0與圓B:x2+y2+2x-4y=0的公共點,則△BMN的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.運行下列程序,輸出的結(jié)果是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示的程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值,若輸入$x=\frac{π}{2}$,則輸出的y值為(  )
A.2B.${log_2}\frac{π}{2}$C.2-2πD.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.經(jīng)過點A(-2,1),B(1,a)的直線l與斜率為$\frac{3}{4}$的直線垂直,則a的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某班主任在其工作手冊中,對該班每個學(xué)生用十二項能力特征加以描述.每名學(xué)生的第i(i=1,2,…,12)項能力特征用xi表示,${x_i}=\left\{{\begin{array}{l}{0,\;\;如果某學(xué)生不具有第i項能力特征}\\{1,\;如果某學(xué)生具有第i項能力特征}\end{array}}\right.$,若學(xué)生A,B的十二項能力特征分別記為A=(a1,a2,…,a12),B=(b1,b2,…,b12),則A,B兩名學(xué)生的不同能力特征項數(shù)為$\sum_{i=1}^{12}{|{a_i}-{b_i}|}$(用ai,bi表示).如果兩個同學(xué)不同能力特征項數(shù)不少于7,那么就說這兩個同學(xué)的綜合能力差異較大.若該班有3名學(xué)生兩兩綜合能力差異較大,則這3名學(xué)生兩兩不同能力特征項數(shù)總和的最小值為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為配合上海迪斯尼游園工作,某單位設(shè)計人數(shù)的數(shù)學(xué)模型(n∈N+):以f(n)=$\left\{\begin{array}{l}{200n+2000,n∈[1,8]}\\{360•{3}^{\frac{n-8}{12}}+3000,n∈[9,32]}\\{32400-720n,n∈[33,45]}\end{array}\right.$表示第n時進入人數(shù),以g(n)=$\left\{\begin{array}{l}{0,n[1,18]}\\{500n-9000,n∈[19,32]}\\{8800,n∈[33,45]}\end{array}\right.$表示第n個時刻離開園區(qū)的人數(shù);設(shè)定以15分鐘為一個計算單位,上午9點15分作為第1個計算人數(shù)單位,即n=1:9點30分作為第2個計算單位,即n=2;依此類推,把一天內(nèi)從上午9點到晚上8點15分分成45個計算單位:(最后結(jié)果四舍五入,精確到整數(shù)).
(1)試計算當(dāng)天14點到15點這一個小時內(nèi),進入園區(qū)的游客人數(shù)f(21)+f(22)+f(23)+f(24)、離開園區(qū)的游客人數(shù)g(21)+g(22)+g(23)+g(24)各為多少?
(2)假設(shè)當(dāng)日園區(qū)游客人數(shù)達到或超過8萬時,園區(qū)將采取限流措施,該單位借助該數(shù)學(xué)模型知曉當(dāng)天16點(即n=28)時,園區(qū)總?cè)藬?shù)會達到最高,請問當(dāng)日是否要采取限流措施?說明理由.

查看答案和解析>>

同步練習(xí)冊答案