8.某班主任在其工作手冊中,對該班每個學(xué)生用十二項(xiàng)能力特征加以描述.每名學(xué)生的第i(i=1,2,…,12)項(xiàng)能力特征用xi表示,${x_i}=\left\{{\begin{array}{l}{0,\;\;如果某學(xué)生不具有第i項(xiàng)能力特征}\\{1,\;如果某學(xué)生具有第i項(xiàng)能力特征}\end{array}}\right.$,若學(xué)生A,B的十二項(xiàng)能力特征分別記為A=(a1,a2,…,a12),B=(b1,b2,…,b12),則A,B兩名學(xué)生的不同能力特征項(xiàng)數(shù)為$\sum_{i=1}^{12}{|{a_i}-{b_i}|}$(用ai,bi表示).如果兩個同學(xué)不同能力特征項(xiàng)數(shù)不少于7,那么就說這兩個同學(xué)的綜合能力差異較大.若該班有3名學(xué)生兩兩綜合能力差異較大,則這3名學(xué)生兩兩不同能力特征項(xiàng)數(shù)總和的最小值為22.

分析 根據(jù)A,B兩名學(xué)生的每一項(xiàng)的特征數(shù)是否相同,進(jìn)行求解計算即可.

解答 解:若第i(i=1,2,…,12)項(xiàng)能力特征相同,則差為0,特征不相同,絕對值為1,
則用xi表示A,B兩名學(xué)生的不同能力特征項(xiàng)數(shù)為=|a1-b1|+|b2-c2|+…+|c12-a12|=$\sum_{i=1}^{12}{|{a_i}-{b_i}|}$,
設(shè)第三個學(xué)生為C=(c1,c2,…,c12),
則di=|ai-bi|+|bi-ci|+|ci-ai|,1≤i≤12,
∵di的奇偶性和(ai-bi)+(bi-ci)+(ci-ai)=0一樣,∴di是偶數(shù),
3名學(xué)生兩兩不同能力特征項(xiàng)數(shù)總和為S=d1+d2+…+d12為偶數(shù),
又S≥7×3=21.則S≥22,
取A=(0,1,1,0,1,1,0,1,1,0,1,1),B=(1,0,1,1,0,1,1,0,1,1,0,1),C=(1,1,0,1,1,0,1,1,0,1,1,1),
則不同能力特征數(shù)總和恰好為22,∴最小值為22,
故答案為:$\sum_{i=1}^{12}{|{a_i}-{b_i}|}$,22

點(diǎn)評 本題主要考查函數(shù)的應(yīng)用問題,讀懂題意建立條件關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A+B=$\frac{π}{4}$,則1+tanA+tanB+tanA•tanB的值等于( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a6=6+a7,則S9的值是54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)為R上的奇函數(shù),當(dāng)x>0時,f(x)=3x,那么f(-2)的值為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a>0,b>0.若3是3a與3b的等比中項(xiàng),則$\frac{1}{a}+\frac{2}$的最小值為( 。
A.$3+2\sqrt{2}$B.$\frac{{3+2\sqrt{2}}}{3}$C.$\frac{{3+2\sqrt{2}}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列四個結(jié)論中,正確的有(  )(填所有正確結(jié)論的序號).
①若A是B的必要不充分條件,則非B也是非A的必要不充分條件;
②“$\left\{\begin{array}{l}{a>0}\\{△=^{2}-4ac}≤0\end{array}\right.$”是“一元二次不等式ax2+bx+c≥0的解集為R”的充要條件
③“x≠1”是“x2≠1”的充分不必要條件;
④“x≠0”是“x+|x|>0”的必要不充分條件.
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若函數(shù)y=f(x)x∈[0,1]同時滿足下列三個條件:①對任意的x∈[0,1],總有f(x)≥0;②f(1)=1;③任意x1,x2∈[0,1],當(dāng)x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立,我們就稱f(x)為“穩(wěn)定函數(shù)”.請根據(jù)上述信息解決以下問題:
(1)已知h(x)是穩(wěn)定函數(shù),求h(0)的值;
(2)若函數(shù)g(x)=ax-1(a>0且a≠1),問是否存在實(shí)數(shù)a,使得g(x)是穩(wěn)定函數(shù)?請說明理由;
(3)已知f(x)是穩(wěn)定函數(shù),存在x0∈[0,1],使得f(x0)∈[0,1]且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若$\overrightarrow{a}$=(2,3,m),$\overrightarrow$=(2n,6,8)且$\overrightarrow{a}$,$\overrightarrow$為共線向量,則m+n的值為( 。
A.7B.$\frac{5}{2}$C.6D.8

查看答案和解析>>

同步練習(xí)冊答案