7.已知M,N是圓A:x2+y2-2x=0與圓B:x2+y2+2x-4y=0的公共點(diǎn),則△BMN的面積為$\frac{3}{2}$.

分析 求出圓B的標(biāo)準(zhǔn)方程,求出圓心B,和半徑R,利用作差法求出公共弦MN的方程,利用點(diǎn)到直線的距離公式以及弦長公式結(jié)合三角形的面積公式進(jìn)行求解即可.

解答 解:圓B:x2+y2+2x-4y=0的標(biāo)準(zhǔn)方程為(x+1)2+(y-2)2=5,即B(-1,2),半徑R=$\sqrt{5}$,
兩個圓的方程相減得MN的方程為:4x-4y=0,即x-y=0,
則B到x-y=0的距離d=$\frac{|-1-2|}{\sqrt{2}}$=$\frac{3}{\sqrt{2}}$,則|MN|=2$\sqrt{{R}^{2}-sqo0cov^{2}}$=2$\sqrt{5-\frac{9}{2}}$=2$\sqrt{\frac{1}{2}}$=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
則△BMN的面積S=$\frac{1}{2}$|MN|d=$\frac{1}{2}×\sqrt{2}×\frac{3}{\sqrt{2}}$=$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.

點(diǎn)評 本題主要考查三角形面積公式的求解,根據(jù)圓與圓的公共弦方程以及利用點(diǎn)到直線的距離公式以及弦長公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.老師任教的高一兩個班級在期中考試中的數(shù)學(xué)成績的情況如下:
  人數(shù)平均分 標(biāo)準(zhǔn)差 
 1年1班 40 90 $\sqrt{10}$
 1年2班 50 811
則這90人的方差是52.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A+B=$\frac{π}{4}$,則1+tanA+tanB+tanA•tanB的值等于( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知實(shí)數(shù)a,b∈R,試寫出命題:“若a2+b2=0,則ab=0”的逆命題、否命題、逆否命題,并判斷三個命題的真假(直接寫出真假性)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.有以下判斷:
①$f(x)=\frac{|x|}{x}$與$f(x)=\left\{{\begin{array}{l}{1,({x≥0})}\\{-1,({x<0})}\end{array}}\right.$是同一個函數(shù);
②y=2x-1與y=2t-1是同一個函數(shù);
③y=f(x)與直線x=2的交點(diǎn)最多有一個;
④y=1不是函數(shù).
其中正確的序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$y=\frac{{|{{x^2}-1}|}}{x-1}$的圖象與函數(shù)y=2x+b的圖象恰有兩個交點(diǎn),則實(shí)數(shù)b的取值范圍是(-4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a6=6+a7,則S9的值是54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)為R上的奇函數(shù),當(dāng)x>0時,f(x)=3x,那么f(-2)的值為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若函數(shù)y=f(x)x∈[0,1]同時滿足下列三個條件:①對任意的x∈[0,1],總有f(x)≥0;②f(1)=1;③任意x1,x2∈[0,1],當(dāng)x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立,我們就稱f(x)為“穩(wěn)定函數(shù)”.請根據(jù)上述信息解決以下問題:
(1)已知h(x)是穩(wěn)定函數(shù),求h(0)的值;
(2)若函數(shù)g(x)=ax-1(a>0且a≠1),問是否存在實(shí)數(shù)a,使得g(x)是穩(wěn)定函數(shù)?請說明理由;
(3)已知f(x)是穩(wěn)定函數(shù),存在x0∈[0,1],使得f(x0)∈[0,1]且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

同步練習(xí)冊答案