【題目】在△ABC中,·=0,||=12,||=15,l為線段BC的垂直平分線,lBC交于點(diǎn)DEl上異于D的任意一點(diǎn).

(1)求·的值;

(2)判斷·的值是否為一個(gè)常數(shù),并說明理由.

【答案】(1)(2)見解析

【解析】

(1)由0ABAC,又||=12,||=15,從而可求得,利用),即可求得的值;

(2)由向量的加法運(yùn)算與向量的乘法分配律可求得的值.

(1)·=0,∴ABAC.

又||=12,||=15,∴||=9.

由已知可得 (),,

· ()·()

(22)= (144-81)=.

(2)·的值為一個(gè)常數(shù).

理由:∵l為線段BC的垂直平分線,lBC交于點(diǎn)D,El上異于D的任意一點(diǎn),∴·=0.

·=(···.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一段“三段論”,其推理是這樣的:對(duì)于可導(dǎo)函數(shù),若,則是函數(shù)的極值點(diǎn),因?yàn)楹瘮?shù)滿足,所以是函數(shù)的極值點(diǎn)”,結(jié)論以上推理  

A. 大前提錯(cuò)誤B. 小前提錯(cuò)誤C. 推理形式錯(cuò)誤D. 沒有錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 C:的離心率為,以短軸為直徑的圓被直線 x+y-1 = 0 截得的弦長(zhǎng)為

(1) 求橢圓 C 的方程;

(2) 設(shè) A, B 分別為橢圓的左、右頂點(diǎn), D 為橢圓右準(zhǔn)線 l x 軸的交點(diǎn), E l上的另一個(gè)點(diǎn),直線 EB 與橢圓交于另一點(diǎn)F,是否存在點(diǎn) E,使 R)? 若存在,求出點(diǎn) E 的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是菱形,,

(1)求證:平面平面;

(2),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)欲做一個(gè)介紹企業(yè)發(fā)展史的銘牌,銘牌的截面形狀是如圖所示的扇形環(huán)面(由扇形挖去扇形后構(gòu)成的).已知,線段與弧、的長(zhǎng)度之和為米,圓心角為弧度.

(1)關(guān)于的函數(shù)解析式;

(2)記銘牌的截面面積為,試問取何值時(shí),的值最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分13分)

工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人.現(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.

1)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

2)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為,其中的一個(gè)排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);

3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達(dá)到最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①已知,是正數(shù),且,則

②命題“,使得”的否定是真命題;

③將化成二進(jìn)位制數(shù)是;

④某同學(xué)研究變量之間的相關(guān)關(guān)系,并求得回歸直線方程,他得出一個(gè)結(jié)論: 負(fù)相關(guān)且

其中正確的命題的序號(hào)是__________(把你認(rèn)為正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中)的周期為,且圖象上一個(gè)最低點(diǎn)為

(1)求的解析式;

(2)當(dāng)時(shí),求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的單調(diào)性;

(2)設(shè)函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

同步練習(xí)冊(cè)答案