11.已知在等差數(shù)列{an}中,a1,a2017為方程x2-10x+16=0的兩根,則a2+a1009+a2016的值為15.

分析 利用一元二次方程的根與系數(shù)的關(guān)系可得a1+a2017=10再利用等差數(shù)列的性質(zhì)即可得出.

解答 解:∵a1,a2017為方程x2-10x+16=0的兩根,
∴a1+a2017=10=2a1009,
∵數(shù)列{an}是等差數(shù)列,
則a2+a1009+a2016=3a1009=15.
故答案為:15.

點評 本題考查了一元二次方程的根與系數(shù)的關(guān)系、等差數(shù)列的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.實數(shù)x,y滿足的不等式組$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$所表示的平面區(qū)域面積為(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$tanα=-\frac{1}{3}$,則$\frac{3sin(π-α)+2cos(-α)}{2sin(2π-α)-cos(π+α)}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知指數(shù)函數(shù)y=g(x)滿足g(3)=8,定義域為R的函數(shù)f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對任意x∈[-5,-1]都有f(1-x)+f(1-2x)>0成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義在區(qū)間[-a,a]上的奇函數(shù),若g(x)=f(x)+2,則g(x)的最大值與最小值之和為(  )
A.0B.2C.4D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A、B為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點,C(0,b),直線l:x=2a與x軸交于點D,與直線AC交于點P,且BP平分角∠DBC,則橢圓的離心率為$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,動點E和F分別在線段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}\overrightarrow{DC}$,當(dāng)λ=$\frac{2}{3}$時,則$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值為$\frac{58}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線1的方程為x+(a-1)y+a2-1=0.
(1)若直線1不過第二象限,求實數(shù)a的取值范圍;
(2)若直線1將圓x2+y2-2mx-4y=0平分,當(dāng)m取得最大值時,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.作出函數(shù)y=|sin(x+$\frac{3π}{2}$)|在[-2π,2π]上的圖象.

查看答案和解析>>

同步練習(xí)冊答案