10.已知sin10°=k,則sin70°=1-2k2

分析 利用二倍角公式化簡(jiǎn)所求條件,代入求解即可.

解答 解:sin10°=k,則sin70°=cos20°=1-2sin210°=1-2k2
故答案為:1-2k2

點(diǎn)評(píng) 本題考查二倍角公式的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示
(1)求f(x)的解析式;
(2)求滿足條件f(x)≥0時(shí),x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)計(jì)算:${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+2lg({\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}})$
(2)已知簡(jiǎn)單組合體如圖,試畫出它的三視圖(尺寸不做嚴(yán)格要求)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a>0,b>0,且ln(a+b)=0,則$\frac{1}{a}+\frac{4}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)m∈R,若函數(shù)f(x)=ex-ln2,則f′(0)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A(2,-4),B(-1,3),C(3,4),若$\overrightarrow{CM}$=2$\overrightarrow{CA}$+3$\overrightarrow{CB}$,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求直線x-y+1=0被圓x2+y2=4截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,正方體ABCD-A1B1C1D1的頂點(diǎn)A在平面α內(nèi),且直線AA1與平面α所成的角為45°,頂點(diǎn)A1在平面α上的射影為點(diǎn)O,當(dāng)頂點(diǎn)C1與點(diǎn)O的距離最大時(shí),直線C1B與平面α所成角的正弦值等于$\frac{2+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),其離心率為e,點(diǎn)B的坐標(biāo)為(0,b),直線F1B與雙曲線C的兩條漸近線分別交于P、Q兩點(diǎn),線段PQ的垂直平分線與x軸,直線F1B的交點(diǎn)分別為M,R,若△RMF1與△PQF2的面積之比為e,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{3}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案