A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | $2\sqrt{2}$ |
分析 根據(jù)DE∥AC利用平行線的性質(zhì),證出AE=BE且∠BDE=∠C.再由弦切角定理證出∠BDE=∠PAE,從而得出∠BED=∠PEA,可得△BED∽△PEA,最后利用題中數(shù)據(jù)計(jì)算線段的比,即可算出PA的長(zhǎng).
解答 解:∵D是BC的中點(diǎn),DE∥AC,∴AE=BE,且∠BDE=∠C.
又∵PA切圓O于點(diǎn)A,∴∠PAE=∠C,可得∠BDE=∠PAE.
∵∠BED=∠PEA,
∴△BED∽△PEA,可得$\frac{ED}{AE}$=$\frac{BE}{PE}$,
∴AE2=BE•AE=PE•ED=6.
由此解出AE=$\sqrt{6}$.
由相交弦定理知AE2=GE•EF,
∴GE=2,
∴PG=1,
∴PA2=PG•PF=6,
∴PA=$\sqrt{6}$.
故選:B.
點(diǎn)評(píng) 本題給出圓滿足的條件,求線段PA的長(zhǎng).著重考查了弦切角定理、平行線的性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí),是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0)∪(3,+∞) | B. | (0,+∞) | C. | (-∞,0)∪(1,+∞) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2012) | B. | (-2016,-2012) | C. | (-∞,-2016) | D. | (-2016,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4+4$\sqrt{2}$)π | B. | (6+4$\sqrt{2}$)π | C. | (8+4$\sqrt{2}$)π | D. | (12+4$\sqrt{2}$)π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com