分析 (Ⅰ)由條件利用直角三角形中的邊角關(guān)系求出三角形的周長(zhǎng),利用三角函數(shù)的倍角公式進(jìn)行化簡(jiǎn)進(jìn)行求解.
(Ⅱ)結(jié)合向量的數(shù)量積公式,結(jié)合三角函數(shù)的帶動(dòng)下進(jìn)行求解.
解答 解:(Ⅰ)BC=OCsinα=$\sqrt{7}$sinα,OB=OCcosα=$\sqrt{7}$cosα,
則若Rt△CBO的周長(zhǎng)為$\frac{{\sqrt{7}(2\sqrt{10}+5)}}{5}$,
則$\sqrt{7}$+$\sqrt{7}$sinα+$\sqrt{7}$cosα=$\frac{{\sqrt{7}(2\sqrt{10}+5)}}{5}$,
sinα+cosα=$\frac{2\sqrt{10}}{5}$,
平方得2sinαcosα=$\frac{3}{5}$,
即$\frac{2sinαcosα}{sin^2α+cos^2α}$=$\frac{2tanα}{1+tan^2α}$=$\frac{3}{5}$,
解得tanα=3(舍)或tanα=$\frac{1}{3}$.
則$\frac{3-cos2α}{co{s}^{2}α-sinαcosα}$=$\frac{2(cos^2α+2sin^2α)}{cos^2α-sinαcosα}$=$\frac{2(1+2tan^2α)}{1-tanα}$=$\frac{2(1+2×\frac{1}{9})}{1-\frac{1}{3}}$=$\frac{11}{3}$.
(Ⅱ)在Rt△OBC中,BC=OCsinα=$\sqrt{7}$sinα,OB=OCcosα=$\sqrt{7}$cosα,
在Rt△ODA中,
OA=DAtan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$BC=$\frac{\sqrt{21}}{3}$sinα,
∴AB=OB-OA=$\sqrt{7}$(cosα-$\frac{\sqrt{3}}{3}$cosα),
則$\overrightarrow{OA}•\overrightarrow{AB}$=|$\overrightarrow{OA}$|$\overrightarrow{AB}$|=$\sqrt{7}$(cosα-$\frac{\sqrt{3}}{3}$cosα)•$\frac{\sqrt{21}}{3}$sinα$\begin{array}{l}=\frac{{7\sqrt{3}}}{3}({cosα-\frac{{\sqrt{3}}}{3}sinα})•sinα\end{array}$$\begin{array}{l}=\frac{{7\sqrt{3}}}{3}({sinαcosα-\frac{{\sqrt{3}}}{3}{{sin}^2}α})\end{array}$$\begin{array}{l}=\frac{{7\sqrt{3}}}{3}[{\frac{1}{2}sin2α-\frac{{\sqrt{3}}}{6}({1-cos2α})}]\end{array}$$\begin{array}{l}=\frac{{7\sqrt{3}}}{3}({\frac{1}{2}sin2α+\frac{{\sqrt{3}}}{6}cos2α-\frac{{\sqrt{3}}}{6}})\end{array}$
=$\frac{{7\sqrt{3}}}{3}[{\frac{1}{{\sqrt{3}}}({\frac{{\sqrt{3}}}{2}sin2α+\frac{1}{2}cos2α})-\frac{{\sqrt{3}}}{6}}]=\frac{7}{3}sin({2α+\frac{π}{6}})-\frac{7}{6}({0<α<\frac{π}{3}})$
∵$0<α<\frac{π}{3}$,
∴$\frac{π}{6}<2α+\frac{π}{6}<\frac{5π}{6}$,
∴當(dāng)$2α+\frac{π}{6}=\frac{π}{2}$,
即$α=\frac{π}{6}$時(shí),$\overrightarrow{OA}•\overrightarrow{AB}$有最大值$\frac{7}{6}$.
點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,三角恒等變換,正弦函數(shù)的定義域和值域,考察學(xué)生的運(yùn)算和推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com