17.已知雙曲線的一條漸近線方程為y=2x,則雙曲線的離心率為$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

分析 討論雙曲線的焦點在x或y軸上,求得漸近線方程,可得b=2a或a=2b,由a,b,c的關系和離心率公式計算即可得到所求值.

解答 解:當雙曲線的焦點在x軸上,
由雙曲線的方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
可得漸近線方程為y=±$\frac{a}$x,
即有b=2a,c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
則e=$\frac{c}{a}$=$\sqrt{5}$;
當雙曲線的焦點在y軸上,
由雙曲線的方程$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0),
可得漸近線方程為y=±$\frac{a}$x,
即有b=$\frac{1}{2}$a,c=$\sqrt{{a}^{2}+^{2}}$=$\frac{\sqrt{5}}{2}$a,
則e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故答案為:$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

點評 本題考查雙曲線的離心率的求法,注意討論焦點的位置,考查漸近線方程與雙曲線的方程的關系,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=|ex+$\frac{a}{{e}^{x}}$|在[0,1]上單調(diào)遞減,則實數(shù)a的取值范圍是(-∞,-e2]∪[e2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.(普通中學做)如圖,已知F1、F2為雙曲線的兩焦點,等邊三角形AF1F2兩邊的中點M、N在雙曲線上,則該雙曲線的離心率為(  )
A.$\sqrt{3}$+1B.$\sqrt{2}$+1C.$\sqrt{5}$+1D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知點F1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左,右焦點,過點F1的直線l與雙曲線C的左,右兩支分別交于P,Q兩點,若△PQF2是以∠PQF2為為直角的等腰直角三角形,e為雙曲線C的離心率,則e2=5+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知點(2,1)在雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的漸近線上,則C的離心率為( 。
A.$\sqrt{5}$B.2C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知在△ABC中,A(-1,0),B(1,0),C點在曲線$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{7}$=1(其中y≠0)上,則$\frac{sinC}{sinA+sinB}$等于( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{4}$C.2$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)y=f(x)(x∈R)d的導函數(shù)為f′(x),若f(x)-f(-x)=2x3,且當x≥0時,f′(x)>3x2,則不等式f(x)-f(x-1)>3x2-3x+1的解集是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側面PAD是邊長為2的正三角形,PD⊥CD,E,F(xiàn)分別為PC,AD的中點.
(1)求證:平面CEF⊥平面ABCD;
(2)求三棱錐P-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列四個式子中是恒等式的是(  )
A.sin(α+β)=sinα+sinβB.cos(α+β)=cosαcosβ+sinβsinβ
C.tan(α+β)=$\frac{tanα-tanβ}{1-tanαtanβ}$D.sin(α+β)sin(α-β)=sin2α-sin2β

查看答案和解析>>

同步練習冊答案