【題目】已知橢圓的左焦點(diǎn)與拋物線 的焦點(diǎn)重合,橢圓的離心率為,過(guò)點(diǎn)作斜率不為0的直線,交橢圓兩點(diǎn),點(diǎn),且為定值.

(1)求橢圓的方程;

(2)求面積的最大值.

【答案】(1) 2

【解析】試題分析:(1)由拋物線焦點(diǎn)可得c,再根據(jù)離心率可得a,即得b(2)先設(shè)直線方程x=ty+m,根據(jù)向量數(shù)量積表示,將直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理代入化簡(jiǎn)可得為定值的條件,解出m;根據(jù)點(diǎn)到直線距離得三角形的高,利用弦公式可得底,根據(jù)面積公式可得關(guān)于t的函數(shù),最后根據(jù)基本不等式求最值

試題解析:解:(1)設(shè)F1﹣c,0),拋物線y2=﹣4x的焦點(diǎn)坐標(biāo)為(﹣1,0),且橢圓E的左焦點(diǎn)F與拋物線y2=﹣4x的焦點(diǎn)重合,∴c=1,

又橢圓E的離心率為,得a=,

于是有b2=a2﹣c2=1.故橢圓Γ的標(biāo)準(zhǔn)方程為:

2)設(shè)Ax1y1),Bx2y2),直線l的方程為:x=ty+m,

整理得(t2+2y2+2tmy+m2﹣2=0

,,

=

=t2+1y1y2+tm﹣t)(y1+y2+m2=

要使為定值,則,解得m=1m=(舍)

當(dāng)m=1時(shí),|AB|=|y1﹣y2|=,

點(diǎn)O到直線AB的距離d=,

△OAB面積s==

當(dāng)t=0△OAB面積的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù).

(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)為曲線上任意一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)是一個(gè)水平放置的正三棱柱, 是棱的中點(diǎn).正三棱柱的正(主)視圖如圖(2)

()求正三棱柱的體積;

()證明: ;

()圖(1)中垂直于平面的平面有哪幾個(gè)?(直接寫(xiě)出符合要求的平面即可,不必說(shuō)明或證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】地為綠化環(huán)境,移栽了銀杏樹(shù)棵,梧桐樹(shù).它們移栽后的成活率分別

、,每棵樹(shù)是否存活互不影響,在移栽的棵樹(shù)中:

(1)求銀杏樹(shù)都成活且梧桐樹(shù)成活的概率;

(2)求成活的棵樹(shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的準(zhǔn)線與軸交于點(diǎn),過(guò)點(diǎn)做圓的兩條切線,切點(diǎn)為.

(1)求拋物線的方程;

(2)若直線是講過(guò)定點(diǎn)的一條直線,且與拋物線交于兩點(diǎn),過(guò)定點(diǎn)的垂線與拋物線交于兩點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取100名學(xué)生,測(cè)得他們的身高(單位: ),按照區(qū)間,

分組,得到樣本身高的頻率分布直方圖(如圖).

(1)求頻率分布直方圖中的值及身高在以上的學(xué)生人數(shù);

(2)將身高在區(qū)間內(nèi)的學(xué)生依次記為三個(gè)組,用分層抽樣的方法從這三個(gè)組中抽取6人,求從這三個(gè)組分別抽取的學(xué)生人數(shù);

(3)在(2)的條件下,要從6名學(xué)生中抽取2人.用列舉法計(jì)算組中至少有1人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)與拋物線 的焦點(diǎn)重合,橢圓的離心率為,過(guò)點(diǎn)作斜率不為0的直線,交橢圓兩點(diǎn),點(diǎn),且為定值.

(1)求橢圓的方程;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)是偶函數(shù);

(2)設(shè),求關(guān)于的函數(shù)時(shí)的值域的表達(dá)式;

(3)若關(guān)于的不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長(zhǎng)度單位相同.已知曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)在曲線上求一點(diǎn),使它到直線 為參數(shù))的距離最短,寫(xiě)出點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案