分析 根據(jù)奇偶性的定義,判斷y=f(x)是定義域上的奇函數(shù);化簡f(x)=-$\frac{1}{2tan2x}$,得出它的最小正周期T=$\frac{π}{2}$.
解答 解:因為函數(shù)y=f(x)=tanx-$\frac{1}{tanx}$的定義域是{x|x≠$\frac{kπ}{2}$,k∈Z};
且f(-x)=tan(-x)-$\frac{1}{tan(-x)}$=-(tanx-$\frac{1}{tanx}$)=-f(x),
所以f(x)是定義域上的奇函數(shù);
又f(x)=tanx-$\frac{1}{tanx}$=$\frac{{sin}^{2}x{-cos}^{2}x}{sinxcosx}$=-$\frac{cos2x}{2sin2x}$=-$\frac{1}{2tan2x}$,
所以它的最小正周期為T=$\frac{π}{2}$.
故答案為:奇函數(shù),$\frac{π}{2}$.
點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了三角恒等變換的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com