若復數(shù)z=(a2-3)-(a+
3
)i,(a∈R)為純虛數(shù),則
a+i2007
3-
3
i
=
 
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:由復數(shù)z為純虛數(shù)求得a,代入
a+i2007
3-
3
i
后由復數(shù)代數(shù)形式的乘除運算化簡求值.
解答: 解:∵z=(a2-3)-(a+
3
)i為純虛數(shù),
a2-3=0
a+
3
≠0
,解得:a=
3

a+i2007
3-
3
i
=
3
+i2007
3-
3
i
=
3
-i
3-
3
i
=
(
3
-i)(3+
3
i)
(3-
3
i)(3+
3
i)
=
3
3

故答案為:
3
3
點評:本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知關于x的函數(shù)y=loga(4-ax)在區(qū)間[0,2]上單調(diào)遞減,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1+cos2α
sin2α
=
1
2
,則tan2α=( 。
A、
5
4
B、-
5
4
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角函數(shù)f(x)=asinx-bcosx,若f(
π
4
-x)=f(
π
4
+x),則直線ax-by+c=0的傾斜角為( 。
A、
π
4
B、
π
3
C、
3
D、
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
3+i
1+i
(i為虛數(shù)單位)在復平面上對應的點位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知g(x)=1-2x,f[g(x)]=
1+x2
x2
(x≠0),則f(
1
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U={x|x≥3,x∈N},集合A={x|x2≥10,x∈N}.則∁UA=(  )
A、∅
B、{3}
C、{10}
D、{3,4,5,6,7,8,9}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設0<α<
π
2
,a是大于0的常數(shù),函數(shù)F(α)=
1
cosα
+
a
1-cosα
,若F(α)≥16恒成立,則a的取值范圍是( 。
A、[1,+∞)
B、[4,+∞)
C、(9,+∞)
D、[9,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知區(qū)域A={(x,y)||x|≤1,|y|≤1},區(qū)域B={(x,y)|(x-1)2+(y+1)2≤4},在區(qū)域A上取一個點P,點P不在區(qū)域B上的概率為( 。
A、
π
4
B、
4-π
4
C、
1
4
D、
3
4

查看答案和解析>>

同步練習冊答案