18.已知回歸直線的斜率的估計值是1.23,樣本點的中心為(4,5),則回歸直線方程是y=1.23x+0.08.

分析 運用樣本中心點的坐標(biāo)滿足回歸直線方程,即可得出結(jié)論.

解答 解:設(shè)回歸方程為y=1.23x+b,
∵樣本中心點為(4,5),
∴5=4.92+b
∴b=0.08
∴y=1.23x+0.08.
故答案為:y=1.23x+0.08.

點評 本題考查回歸方程,考查學(xué)生的計算能力,屬于基礎(chǔ)題.運用樣本中心點的坐標(biāo)滿足回歸直線方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某位同學(xué)進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該小賣部的這種飲料銷量y(杯),得到如下數(shù)據(jù):
日    期1月11日1月12日1月13日1月14日1月15日
平均氣溫x(°C)91012118
銷量y(杯)2325302621
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)根據(jù)(Ⅱ)中所得的線性回歸方程,若天氣預(yù)報1月16日的白天平均氣溫7(°C),請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖是一個三棱錐的三視圖,其俯視圖是正三角形,主視圖與左視圖都是直角三角形.則這個三棱錐的外接球的表面積是( 。
A.19πB.28πC.67πD.76π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{3}$sinx-2sin2$\frac{x}{2}$.
(1)求f($\frac{3}{2}$π)的值;
(2)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在2013年春節(jié)期間,某市物價部門,對本市五個商場銷售的某商品一天的銷售量及其價格進行調(diào)查,五個商場的售價x元和銷售量y件之間的一組數(shù)據(jù)如下表所示:
價格x99.51010.511
銷售量y1110865
通過分析,發(fā)現(xiàn)銷售量y對商品的價格x具有線性相關(guān)關(guān)系.
(1)求銷售量y對商品的價格x的回歸直線方程;
(2)欲使銷售量為12,則價格應(yīng)定為多少.
附:在回歸直線$y=\hat bx+\hat a$中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如果a>0,b>0,試證明lg$\frac{a+b}{2}$≥$\frac{lga+lgb}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在${(1-{x^2}+\frac{2}{x})^7}$的展開式中的x3的系數(shù)為( 。
A.210B.-210C.-910D.280

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個三棱柱的側(cè)視圖、俯視圖如圖所示,則三棱柱的表面積是16+6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2-3sinθ}\\{y=3cosθ-2}\end{array}\right.$(θ為參數(shù)),在極坐標(biāo)系(以原點O為極點,以x軸非負(fù)半軸為極軸)中,直線l的方程為$\sqrt{2}$ρcosθ+$\sqrt{2}$ρsinθ=2a.
(1)求曲線C的普通方程;
(2)若直線l與動點A的軌跡有且僅有一個公共點,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案