15.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,3(b2+c2)=3a2+2bc,且△ABC的面積S=5$\sqrt{2}$,則邊長(zhǎng)a的最小值為( 。
A.20B.2$\sqrt{5}$C.$\sqrt{5}$D.10

分析 利用3(b2+c2)=3a2+2bc,求出cosA=$\frac{1}{3}$,可得sinA=$\frac{2\sqrt{2}}{3}$,根據(jù)△ABC的面積S=5$\sqrt{2}$,求出bc,利用基本不等式求出邊長(zhǎng)a的最小值.

解答 解:∵3(b2+c2)=3a2+2bc,
∴3•2bc•cosA=2bc,
∴cosA=$\frac{1}{3}$,
∴sinA=$\frac{2\sqrt{2}}{3}$,
∵△ABC的面積S=5$\sqrt{2}$,
∴$\frac{1}{2}$bcsinA=5$\sqrt{2}$,
∴bc=15,
∴3a2=3(b2+c2)-30≥6bc-30=60,
∴a2≥20,
∴a≥2$\sqrt{5}$.
故選:B.

點(diǎn)評(píng) 本題考查余弦定理,三角形面積的計(jì)算,考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+2cos2$\frac{x}{2}$.
(1)求的最小正周期和在$[\frac{π}{6},π]$上單調(diào)遞減區(qū)間;
(2)在△A BC中,角 A,B,C的對(duì)邊分別是a,b,c,且若f( B)=3,b=3,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求函數(shù)y=$\frac{tanx}{1+ta{n}^{2}x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2)的離心率為$\frac{\sqrt{3}}{3}$,斜率為k的直線l過(guò)點(diǎn)E(0,1)且與橢圓交于C,D兩點(diǎn).
(1)求橢圓的方程;
(2)若直線l與x軸相交于點(diǎn)G,且$\overrightarrow{GC}$=$\overrightarrow{DE}$,求k的值;
(3)設(shè)點(diǎn)A為橢圓的下頂點(diǎn),kAC,kAD分別為直線AC,AD的斜率,證明:對(duì)任意的k,恒有kAC•kAD=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$+log2(2x+4)的定義域?yàn)椋?2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求函數(shù)y=-tan3x+4tanx+1,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知集合M={y|y=3x},M={y|y=x${\;}^{\frac{2}{3}}$},則M∩N=(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{(acosx-1)^{2}+si{n}^{2}x}$
(1)當(dāng)a=2時(shí),求f(x)的值域;
(2)當(dāng)且僅當(dāng)x=2kπ,k∈Z時(shí),f(x)取最小值,求正數(shù)a的取值范圍;
(3)是否存在正數(shù)a,使得對(duì)于定義域內(nèi)的任意x,$\frac{f(x)}{a-cosx}$為定值?若存在,求a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,已知OPQ是半徑為1,圓心角為$\frac{π}{3}$的扇形,A是扇形弧PQ上的動(dòng)點(diǎn),AB∥OQ,OP與AB交于點(diǎn)B,AC∥OP,OQ與AC交于點(diǎn)C,求點(diǎn)A的位置,使平行四邊形ABOC的面積最大,并求出這個(gè)最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案