3.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2)的離心率為$\frac{\sqrt{3}}{3}$,斜率為k的直線(xiàn)l過(guò)點(diǎn)E(0,1)且與橢圓交于C,D兩點(diǎn).
(1)求橢圓的方程;
(2)若直線(xiàn)l與x軸相交于點(diǎn)G,且$\overrightarrow{GC}$=$\overrightarrow{DE}$,求k的值;
(3)設(shè)點(diǎn)A為橢圓的下頂點(diǎn),kAC,kAD分別為直線(xiàn)AC,AD的斜率,證明:對(duì)任意的k,恒有kAC•kAD=-2.

分析 (1)由橢圓的離心率結(jié)合隱含條件求得a,c的值,則橢圓方程可求;
(2)由題意設(shè)出直線(xiàn)方程,和橢圓方程聯(lián)立,化為關(guān)于x的一元二次方程后利用根與系數(shù)的關(guān)系可得C,D兩點(diǎn)的橫坐標(biāo)的和與積,把$\overrightarrow{GC}$=$\overrightarrow{DE}$轉(zhuǎn)化為點(diǎn)的橫坐標(biāo)間的關(guān)系,代入根與系數(shù)的關(guān)系后求得k值;
(3)由橢圓方程求出A的坐標(biāo),得到kAC,kAD,代入根與系數(shù)的關(guān)系證得答案.

解答 (1)解:由$e=\frac{c}{a}=\frac{\sqrt{3}}{3}$,得$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{3}$,即a2=3c2,
又b2=4,a2=b2+c2
∴c2=2,a2=6.
則橢圓的方程為$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{4}=1$;
(2)解:如圖,由題意可知,直線(xiàn)l的斜率存在且不為0,
設(shè)其方程為y=kx+1,
聯(lián)立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得(2+3k2)x2+6kx-9=0.
再設(shè)C(x1,y1),D(x2,y2),
則${x}_{1}+{x}_{2}=-\frac{6k}{2+3{k}^{2}},{x}_{1}{x}_{2}=-\frac{9}{2+3{k}^{2}}$,
若$\overrightarrow{GC}$=$\overrightarrow{DE}$,則x1=xG-x2,即x1+x2=xG,
由y=kx+1,取y=0可得${x}_{G}=-\frac{1}{k}$,
∴$-\frac{6k}{2+3{k}^{2}}=-\frac{1}{k}$,解得:$k=±\frac{\sqrt{6}}{3}$;
(3)證明:由題意方程可得A(0,-2),
則${k}_{AC}=\frac{{y}_{1}+2}{{x}_{1}},{k}_{AD}=\frac{{y}_{2}+2}{{x}_{2}}$,
∴kAC•kAD=$\frac{{y}_{1}+2}{{x}_{1}}•\frac{{y}_{2}+2}{{x}_{2}}$=$\frac{{y}_{1}{y}_{2}+2({y}_{1}+{y}_{2})+4}{{x}_{1}{x}_{2}}$.
y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=${k}^{2}(-\frac{9}{2+3{k}^{2}})+k(-\frac{6k}{2+3{k}^{2}})+1$=$\frac{2-12{k}^{2}}{2+3{k}^{2}}$,
${y}_{1}+{y}_{2}=k({x}_{1}+{x}_{2})+2=k(-\frac{6k}{2+3{k}^{2}})+2$=$\frac{4}{2+3{k}^{2}}$.
∴kAC•kAD=$\frac{\frac{2-12{k}^{2}}{2+3{k}^{2}}+\frac{8}{2+3{k}^{2}}+4}{-\frac{9}{2+3{k}^{2}}}$=$\frac{\frac{18}{2+3{k}^{2}}}{-\frac{9}{2+3{k}^{2}}}=-2$.

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查直線(xiàn)和圓錐曲線(xiàn)位置關(guān)系的應(yīng)用,涉及直線(xiàn)與圓錐曲線(xiàn)的關(guān)系問(wèn)題,常采用聯(lián)立直線(xiàn)方程與圓錐曲線(xiàn)方程,利用一元二次方程的根與系數(shù)的關(guān)系求解,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知等比數(shù)列{an}的公比大于零,a1+a2=3,a3=4,數(shù)列{bn}是等差數(shù)列,${b_n}=\frac{{n({n+1})}}{n+c}$,c≠0是常數(shù).
(1)求的值,數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿(mǎn)足:當(dāng)n為偶數(shù)時(shí)cn=an,當(dāng)n為奇數(shù)時(shí)cn=bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的上頂點(diǎn)為P,左右焦點(diǎn)為F1,F(xiàn)2,左右頂點(diǎn)為D,E,過(guò)原點(diǎn)O不垂直x軸的直線(xiàn)與橢圓C交于A,B兩點(diǎn).

(Ⅰ)若橢圓的離心率為$\frac{1}{2}$,F(xiàn)2(1,0),
①求橢圓的方程;
②連接AE,BE與右準(zhǔn)線(xiàn)交于點(diǎn)N,M,則在x軸上是否存在定點(diǎn)T,使TM⊥TN,若存在,求出點(diǎn)T的坐標(biāo),若不存在說(shuō)明理由.
(Ⅱ)若直線(xiàn)PF1∥AB,且PF1與橢圓交于點(diǎn)Q,$\frac{AB}{PQ}=\frac{\sqrt{5}}{2}$,求橢圓離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.橢圓上的點(diǎn)A(-3,0)關(guān)于直線(xiàn)y=x和y=-x的對(duì)稱(chēng)點(diǎn)分別為橢圓的焦點(diǎn)F1和F2,P為橢圓上任意一點(diǎn),則|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知f(x)=2+log2x(1≤x≤8),判斷函數(shù)g(x)=f2(x)+f(2x)有無(wú)零點(diǎn)?若有零點(diǎn),求出零點(diǎn);若無(wú)零點(diǎn),則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{sin(2π+a)}{tan(-a-π)cos(-a)tan(π+a)}$的值
(2)已知sinθ=-$\frac{4}{5}$,且tanθ>0,求cosθ•sinθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,3(b2+c2)=3a2+2bc,且△ABC的面積S=5$\sqrt{2}$,則邊長(zhǎng)a的最小值為(  )
A.20B.2$\sqrt{5}$C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=4x-2x+1+1(x<0)的值域是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.以下命題中真命題的序號(hào)是( 。
①若棱柱被一平面所截,則分成的兩部分不一定是棱柱;
②有兩個(gè)面平行,其余各面都是梯形的幾何體叫棱臺(tái);
③用一個(gè)平面去截圓錐,底面和截面之間的部分組成的幾何體叫圓臺(tái);
④有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱.
A.③④B.①④C.①②④D.

查看答案和解析>>

同步練習(xí)冊(cè)答案