分析 (1)賦值法,令a=b=0和令a=b=1,可分別求出f(0)、f(1)
(2)構造f(-x)和f(x)之間的關系式,看符合奇函數(shù)還是偶函數(shù),先賦值求出f(-1),再令a=-1,b=x即可
(3)從而可知數(shù)列{$\frac{{A}_{n}}{{2}^{-n}}$}是以-1為,-1為首項的等差數(shù)列,故可求數(shù)列{An}的通項公式,從而得出數(shù)列g(n)的通項公式
解答 解:(1)令a=b=0,代入得f(0)=0•f(0)+0•f(0)=0.
令a=b=1,代入得f(1)=1•f(1)+1•f(1),則f(1)=0.
(2)∵f(1)=f[(-1)2]=-f(-1)-f(-1)=0,
∴f(-1)=0.
令a=-1,b=x,則f(-x)=f(-1•x)=-f(x)+xf(-1)=-f(x),
因此f(x)是奇函數(shù).
(3)令a=2,b=$\frac{1}{2}$,得f(1)=2f($\frac{1}{2}$)+$\frac{1}{2}$f(2),且f(2)=2,
∴f($\frac{1}{2}$)=-$\frac{1}{2}$,
令a=2-n,b=2,得f(2-n+1)=2-nf(2)+2f(2-n)
設An=f(2-n)
∴An-1=2-(n-1)+2An,
∴$\frac{{A}_{n-1}}{{2}^{-(n-1)}}$=1+$\frac{{A}_{n}}{{2}^{-n}}$,
即$\frac{{A}_{n}}{{2}^{-n}}$-$\frac{{A}_{n-1}}{{2}^{-(n-1)}}$=-1,且$\frac{{A}_{1}}{\frac{1}{2}}$=$\frac{f(\frac{1}{2})}{\frac{1}{2}}$=-1,
即數(shù)列{$\frac{{A}_{n}}{{2}^{-n}}$}是以-1為,-1為首項的等差數(shù)列,
∴$\frac{{A}_{n}}{{2}^{-n}}$=-n,
∴An=-n•2-n
∴g(n)=-$\frac{1}{{2}^{n}}$.
點評 本題考查賦值法的巧妙使用、奇函數(shù)和偶函數(shù)的判定以及等差數(shù)列的證明和通項公式的求法,屬中檔題
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com