3.已知數(shù)列{an}為等差數(shù)列,且a2+a3+a10+a11=48,則a6+a7=( 。
A.21B.22C.23D.24

分析 利用等差數(shù)列通項(xiàng)公式得到a2+a3+a10+a11=2(a6+a7),由此能求出結(jié)果.

解答 解:∵數(shù)列{an}為等差數(shù)列,且a2+a3+a10+a11=48,
∴a2+a3+a10+a11=2(a6+a7)=48,
∴a6+a7=24.
故選:D.

點(diǎn)評 本題考查等差數(shù)列的兩項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓C交于A,B兩點(diǎn)的直線l:y=kx+m(k∈R),使得OA⊥OB?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知φ:$\frac{x-1}{x+2}$≤0,ξ:使函數(shù)f(x)=lg(3-x)(x+a)有意義的x,若φ是ξ的充分不必要條件,則a的取值范圍是(  )
A.a≥-1B.a≥-2C.a≥2D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.84,則P(ξ≤-2)=0.16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=2x2-mx+3在(-2,+∞)上單調(diào)遞增,在(-∞,-2]上單調(diào)遞減,則f(1)=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y≤2}\\{x≥0}\\{x+y≥0}\end{array}\right.$,z=(x+1)2+(y+2)2,則z的最小值為( 。
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,且滿足(n+1)an=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=ancos(πan),求數(shù)列{bn)的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.y=cos2x-1,則f(x)是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為2π的奇函數(shù)D.最小正周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知C=45°,b=$\sqrt{2}$,c=2,則A=105°.

查看答案和解析>>

同步練習(xí)冊答案