已知f(x)=
1
x
,則
lim
△x→0
-f(2+△x)+f(2)
△x
的值是(  )
A、
1
4
B、2
C、-
1
4
D、-2
考點(diǎn):變化的快慢與變化率
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:利用導(dǎo)數(shù)的定義,代入計(jì)算即可,
解答: 解:因?yàn)閒(x)=
1
x
,
所以
lim
△x→0
-f(2+△x)+f(2)
△x
=
lim
△x→0
-
1
2+△x
+
1
2
△x
=
lim
△x→0
1
4+△x
=
1
4

故選:A.
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定命題p:存在x∈R,使
a
=x
b
,則
a
b
;q:?銳角△ABC,sinA<cosB.下面復(fù)合命題中正確的是( 。
A、p∧qB、p∨q
C、¬p∧qD、¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=
3
5
,α∈(0,π),則cos(α-
π
6
)的值為(  )
A、
3+4
3
10
B、
3-4
3
10
C、
3
3
+4
10
D、
3
3
-4
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確命題的個(gè)數(shù)是( 。
(1)若x,y∈C,則x+yi=1+i的充要條件是x=y=1
(2)若a,b∈R且a>b,則a+i>b+i
(3)若x2+y2=0,x,y∈C,則x=y=0.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列方程所表示的直線中,是函數(shù)y=sin(2x+
5
2
π)圖象的對(duì)稱軸的是( 。
A、x=-
π
4
B、x=-
π
2
C、x=
π
8
D、x=
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-log
1
2
x實(shí)數(shù)a,b,c滿足a<b<c,且滿足f(a)•f(b)•f(c)<0,若實(shí)數(shù)x0是函數(shù)y=f(x)的一個(gè)零點(diǎn),則下列結(jié)論一定成立的是( 。
A、x0>c
B、x0<c
C、x0>a
D、x0<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
3x2
的導(dǎo)數(shù)是( 。
A、3x2
B、
1
3
x2
C、
2
3
3x
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax2+4
,且x=2是函數(shù)f(x)的一個(gè)極小值點(diǎn).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求f(x)在區(qū)間[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=n2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=
1
anan+1
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案