已知{an}是等差數(shù)列,且a1=1,a1+a2+a3=6.
(1)求數(shù)列{an}的通項公式及前n項的和Sn;
(2)令bn=an2n,求{bn}的前n項的和Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件,利用等差數(shù)列的通項公式,求出首項和公差,由此能求出數(shù)列{an}的通項公式及前n項的和.
(2)由an=n,得到bn=an2n=n•2n,由此利用錯位相減法能求出{bn}的前n項的和Tn
解答: 解:(1)∵{an}是等差數(shù)列,且a1=1,a1+a2+a3=6,
a1=1
3a1+3d=6

解得a1=1,d=1,
an=1+(n-1)×1=n,
Sn=n+
n(n-1)
2
=
n(n+1)
2

(2)∵an=n,
bn=an2n=n•2n,
Tn=1•2+2•22+…+n•2n,①
2Tn=1•22+2•23+…+n•2n+1,②
②-①,得:
Tn=-2-22-…-2n+n•2n+1
=-
2(1-2n)
1-2
+n•2n+1
=(n-1)•2n+1+2.
點評:本題考查數(shù)列的通項公式和前n項和的求法,是中檔題,解題時要注意錯位相減法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖直角梯形OABC中,∠COA=∠OAB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分別以O(shè)C,OA,OS為x軸、y軸、z軸建立直角坐標(biāo)系O-xyz.
(Ⅰ)求
SC
OB
夾角的余弦值;
(Ⅱ)求OC與平面SBC夾角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱柱ABC-A1B1C1的底面為直角三角形,則棱與底面垂直,如圖所示,D是棱CC1的中點,且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)證明:A1D⊥平面AB1C1;
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sin2x+2,cosx)
,
n
=(1,2cosx)
,設(shè)函數(shù)f(x)=
m
n
,x∈R.
①求f(x)的最大值以及此時相應(yīng)的自變量x的集合;
②在△ABC中,a、b、c分別是角A、B、C的對邊,若f(A)=4,b=1,△ABC的面積為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,A、B是橢圓的左、右頂點,F(xiàn)是橢圓的左焦點,點P是橢圓上的動點.其中,|PF|的最小值是2-
2
,△PFA的面積最大值是
2
-1

(Ⅰ)求該橢圓的方程;
(Ⅱ)如圖,直線BM⊥AB,BM交AP于M,OM交BP于N,求點N到點Q(0,2)的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側(cè)棱SA⊥底面ABCD,且SA=2,AD=DC=1.
(1)若點E在SD上,且AE⊥SD,證明:AE⊥平面SDC;
(2)若三棱錐S-ABC的體積VS-ABC=
1
6
,求面SAD與面SBC所成二面角的正弦值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠ABC=90°,AD∥BC,且PA=AD=2,AB=BC=1,E為PD的中點.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)求二面角E-AC-D的余弦值;
(Ⅲ)在線段AB上是否存在一點F(不與A,B兩點重合),使得AE∥平面PCF?若存在,求出AF的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1,M為PB中點.
(1)證明:AB⊥CM;
(2)求AC與PB所成的角的余弦值;
(3)求二面角A-MC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(cosx)=cos2x,則f(sin75°)=
 

查看答案和解析>>

同步練習(xí)冊答案