16.若(1-2x)4=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4,則a1+a3=40.

分析 根據(jù)[1+2(x-1)]4=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4,利用二項(xiàng)展開式的通項(xiàng)公式求得a1+a3 的值.

解答 解:∵(1-2x)4=(2x-1)4=[1+2(x-1)]4=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4,
∴a1+a3=${C}_{4}^{1}$•2+${C}_{4}^{3}$•8=40,
故答案為:40.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.曲線C1:$\left\{\begin{array}{l}{x=2cosθ}\\{y=bsinθ}\end{array}\right.$(θ∈[0,2π],θ為參數(shù),b>0)與曲線C2:$\left\{\begin{array}{l}{x=-1+tcosφ}\\{y=2+tsinφ}\end{array}\right.$(t是參數(shù),φ∈[0,π])恒有公共點(diǎn),則b的取值范圍是{b|b≥$\frac{4\sqrt{3}}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若(1-3x)2016=a0+a1x+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知角α的始邊與x軸的正半軸重合,頂點(diǎn)在坐標(biāo)原點(diǎn),角α終邊上的一點(diǎn)P到原點(diǎn)的距離為$\sqrt{2}$,若α=$\frac{π}{4}$,則點(diǎn)P的坐標(biāo)為( 。
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,1)C.($\sqrt{2}$,$\sqrt{2}$)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式$\frac{1+|x|}{|x|-3}$≥3的解集為( 。
A.(-5,-3)∪(3,5)B.[-5,-3)∪(3,5]C.(-5,-3)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x-y≤2}\\{2x+y≤4}\end{array}\right.$,則z=$\frac{y+3}{x-1}$的取值范圍是( 。
A.(-∞,-3]∪[1,+∞)B.[-1,3]C.(-∞,-1]∪[3,+∞)D.[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=$\sqrt{-{x}^{2}+10x-9}$,g(x)=[f(x)]2+f(x2)的定義域?yàn)閇1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,若AB=3,B=45°,BC=3$\sqrt{2}$,則△ABC的面積為(  )
A.$2\sqrt{2}$B.4C.$\frac{7}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=m$\overrightarrow{a}$-2$\overrightarrow$,是△ABC以BC為斜邊的直角三角形,則m=-11.

查看答案和解析>>

同步練習(xí)冊(cè)答案