17.若A,B兩事件互斥,且P(A)=0.3,P(B)=0.6,則P(A+B)=0.9.

分析 由條件根據(jù)互斥事件的概率加法公式,求得即可.

解答 解:∵事件A、B是互斥事件,且P(A)=0.5,P(B)=0.6,
∴P(A+B)=P(A)+P(B)=0.9,
故答案為:0.9.

點(diǎn)評 本題主要考查互斥事件的概率加法公式的應(yīng)用,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的單調(diào)區(qū)間.
(1)y=cos4x;
(2)y=3sinx-cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.圓(x-1)2+(y+2)2=2的圓心到直線x-y=1的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中的說法正確的是( 。
A.若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實數(shù)λ使得$\overrightarrow a=λ\overrightarrow b$
B.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
C.命題“?x0∈R,使得${x_0}^2+{x_0}+1<0$”的否定是:“?x∈R,均有x2+x+1≥0”
D.“a≠5且b≠-5”是“a+b≠0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.曲線C1上任意一點(diǎn)M滿足|MF1|+|MF2|=4,其中F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0)拋物線C2的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),頂點(diǎn)為原點(diǎn)O.
(1)求C1,C2的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線l滿足條件:①過C2的焦點(diǎn)F;②與C1交于不同兩點(diǎn)M,N,且滿足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線C的頂點(diǎn)是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)F2重合,若拋物線C與該橢圓在第一象限的交點(diǎn)為P,橢圓的左焦點(diǎn)為F1,則|PF1|=( 。
A.$\frac{2}{3}$B.$\frac{7}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,}&{x≤2}\\{{{log}_2}x-1,}&{x>2}\end{array}}\right.$,則f(f(4))=1,函數(shù)f(x)的單調(diào)遞減區(qū)間是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果函數(shù)y=logax在區(qū)間[2,+∞)上恒有y>1,那么實數(shù)a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在數(shù)列{an}中,a1=1,an+2+ancosnπ=1,記Sn是數(shù)列{an}的前n項和,則$\frac{{S}_{120}}{{a}_{61}}$等于( 。
A.930B.1520C.60D.61

查看答案和解析>>

同步練習(xí)冊答案